

Year 4

By Clive Davies

© Clive Davies 2016 All rights reserved

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without the prior written permission of the publisher. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, providing full acknowledgement is given. This publication should only be used be the purchasing organisation or individual. Focus Education does not grant permission for the purchaser to distribute the content of this publication outside their organisation, this includes placing the whole document or parts on social media or internet sites.

First Published in the UK in 2016 by Focus Education (UK) Ltd

Focus Education (UK) Ltd Publishing Talking Point Conference & Exhibition Centre Huddersfield Road Scouthead Saddleworth OL4 4AG

Focus Education (UK) Ltd Reg. No 4507968

FRN: F258(4)

Companies, institutions and other organisations wishing to make bulk purchases of books published by Focus Education should contact their local bookstore or Focus Education direct:

Customer Services, Focus Education, Talking Point Conference & Exhibition Centre, Huddersfield Road, Scouthead, Saddleworth, OL4 4AG Tel 01457 821818 Fax 01457 878205

> www.focus-education.co.uk customerservice@focus-education.co.uk Produced in Great Britain by Focus Education UK Ltd, Scouthead

(c) Focus Education (UK) Ltd

ABOUT THE AUTHOR

Clive Davies, OBE is one of the founding Directors of Focus working with school both nationally and internationally. He draws on a vast experience, including work as a headteacher, Ofsted inspector, trainer and consultant.

Clive has a wealth of experience working with schools to analyse their current position and supporting leaders to construct purposeful and fit-for-purpose self-evaluation systems which impact on pupil outcomes. Over recent years, Clive has been focusing particularly on the development of an approach to leading and delivering the curriculum which ensures a high degree of engagement for children. This approach to the curriculum is being used in schools across England. He is one of the innovators for the learning challenge curriculum which has gained national acclaim for its success. Clive works in all areas of school improvement and works from early years through the secondary phase.

As a headteacher, Clive's school gained a National Curriculum Award and featured in the TES as one of three schools recognised for its quality practice. Awarded an OBE for Services to Education in 2009, he still works with schools on an advisory basis, and is a highly sought after key note speaker at conferences both nationally and internationally.

Clive has written a wide range of publications which have become known for their straight forward and useful style; helping school leaders focus on what is most important to making a difference, including the best-selling 'Raising Standards by Setting Targets'. Some of Clive's most recent and best selling publications are:

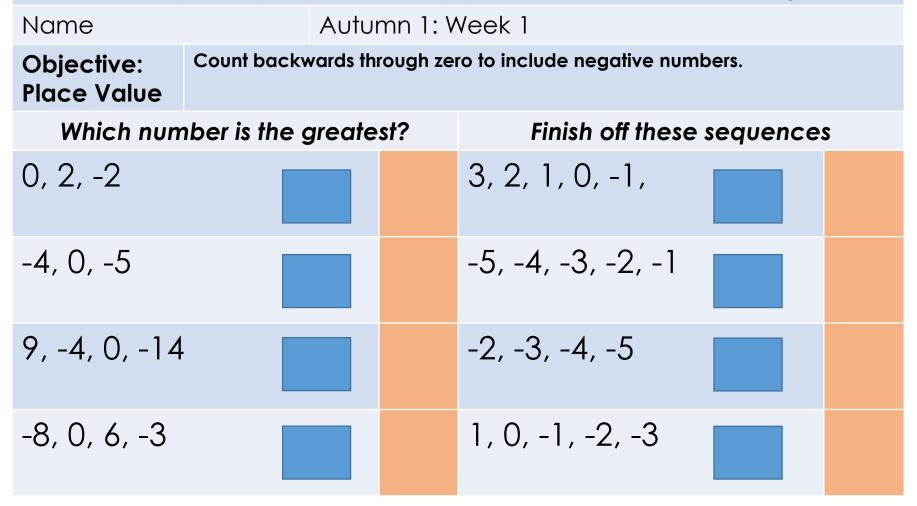
- Making Good Lessons Outstanding
- Maths Learning Challenge Curriculum: Pre and Post Learning Challenges
- Talk for Success
- Science Learning Challenge Curriculum
- History & Geography Learning Challenge Curriculum
- Leading the EYFS (co-authored with Sarah Quinn)
- Assessing Science and Non Core Subjects: In the new National Curriculum (Years 1 to 6)
- Focus on Maths (co-authored with Helen Rowland)
- Assessing without Levels
- Empowering Learners: A Focus on Learning Behaviours
- Step up to the Challenge Series
- Making Book Scrutiny more Meaningful

Contents

Title	Page
<u>Overview of the year</u>	5
Autumn 1: Overview and Teaching Steps	6
Autumn 2: Overview and Teaching Steps	43
Spring 1: Overview and Teaching Steps	76
Spring 2: Overview and Teaching Steps	113
Summer 1: Overview and Teaching Steps	146
Summer 2: Overview and Teaching Steps	183

Year 4: Overview of the year					
Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
1 Place value, including negative numbers	1 Multiplication & Division - Mental multiplication & division	3 Place value. including Roman numerals	5Multiplication & Division - Mental multiplication & written division	5 Place Value Counting and sequences	6 Place value
2 Place value	2 Multiplication and Division	1 Fractions and decimals.	4 Place value	3 Fractions and decimals (using measures)	2 Statistics
1 Addition and subtraction	3 Multiplication and Division Written multiplication	2 Fractions, decimals and division	3 Addition and subtraction	4 Fractions and written division	4 Addition and subtraction (using statistics)
2 Addition and subtraction (problems and inverse)	2 Measures Length, including perimeter	2 Geometry Position and direction	3 Geometry 2D shape and position	4 Measures Volume, capacity and mass	6 Fractions - Decimals
1 Geometry 2D shape	1 Statistics	3 Measures Area	6 Multiplication & Division	4 Geometry Position and area	5 Geometry Shape
1 Measures Time	Consolidate and Assess	4 Multiplication and Division (using measures and money)	Consolidate and Assess	5 Fractions	Consolidate and Assess

YEAR 4 : AUTUMN 1: Overview and Teaching Steps					
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6
1 Place Value Negative Numbers	2 Place Value	1 Addition & Subtraction	2 Addition & Subtraction	1 Geometry Shape	1 Measures Time
Count backwards through zero to include negative numbers	Count in multiples of 6, 7, 9, 25 and 1000.	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction, where appropriate.	Estimate and use inverse operations to check answers to a calculation.	Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.	Read, write & convert time between analogue and digital 12- and 24- hour clocks.
 Know that the value of any negative number is less than 0 Know which of two negative numbers is greater Know which of two negative numbers is smaller Count accurately forwards from any negative number, moving across 0 Count accurately backwards from any positive number to any positive number to any negative number, moving across 0 Count accurately backwards from any positive number as to fine a set of negative and positive numbers showing smallest to largest Order a set of negative and positive numbers showing largest to smallest 	 Count on and back in 1000s from 0 to 10,000 Count on and back in 10s from any given multiple between 0 and 10,000 Count on and back in 100s from 0 to 10,000 Count on and back in 50s from 0 to 1000 starting at any given multiple Count on and back in 25s from 0 to 1000 starting at any given multiple Count on and back in 9s from 0 to 1000 starting at any given multiple Count on in 8s from 0 to 1000 starting at any given multiple Count on in 8s from 0 to 1000 starting at any given multiple Count on in 7s from 0 to 1000 starting at any given multiple Count on in 6s from 0 to 1000 starting at any given multiple 	 Add numbers with 4-digits without exchanging Add numbers with 4-digits where the total of hundreds, tens or ones exceed 10 Subtract a number from a 4-digit number which requires no exchanging Subtract a number from a 4-digit number where exchanging is required 	 Estimate the answer to any given addition involving two 2-digit numbers to the nearest 10. Estimate the answer to any given addition involving two 3-digit numbers to the nearest 100. Estimate the answer to any given addition involving two 3-digit numbers to the nearest 10. Estimate the answer to any given addition involving two 3-digit numbers to the nearest 10. Estimate the answer to any given subtraction involving two 2-digit numbers to the nearest 10. Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 10. Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 10. Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 10. Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 10. Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 10. Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 10. Explain the term 'inverse' and exemplify with an example. Check the answer to any calculation with 2 and 3 digit numbers using the inverse. 	 sizes. Sort shapes according to their properties using correct vocabulary Draw and classify shapes based on given criteria, then sort 	 Know how to set out each analogue time in digital format Know how to set out each digital time in analogue format. Convert between analogue and digital and vice versa Explain how the digital clock system works, e.g. 10 past 2 in the afternoon = 2:10pm = 14:10.


Year 4: Autumn 1

Week 1: Place Value – Negative Numbers

Count backwards through zero to include negative numbers.

Autumn 1: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

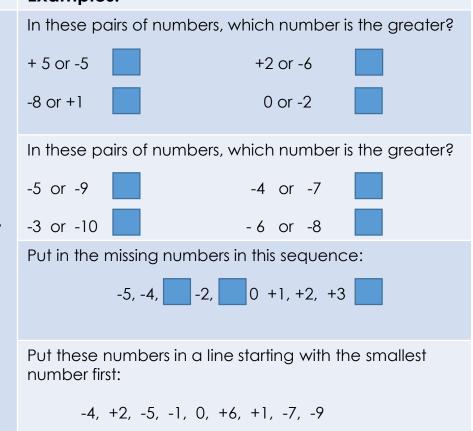
Autumn 1: Week 1: Practice and Consolidation

Place Value 1: Count backwards through zero to include negative

numbers.

Te	Teaching Oral a				
	quence	Oral a Examp			
>	Know that the value of any	• Use			
	negative number is	pu			
	less than 0	will			
\succ	Know which of two	_			
	negative numbers is	• Ge			
~	greater	on			
	Know which of two negative numbers is	ne			
	smaller				
\succ	Count accurately	err			
	forwards from any	 Use 			
	negative number to	an			
	any positive				
	number, moving across 0	nui			
	Count accurately	CO			
	backwards from	to			
	any positive	со			
	number to any				
	negative number,	mc			
	moving across 0	 Tal 			
×	Order a set of negative and	rec			
	positive numbers	Ce			
	showing smallest to				
	largest	da			
\succ	Order a set of	CO			
	negative and	nu			

positive numbers


smallest

showing largest to

Oral and Mental Activities Examples:

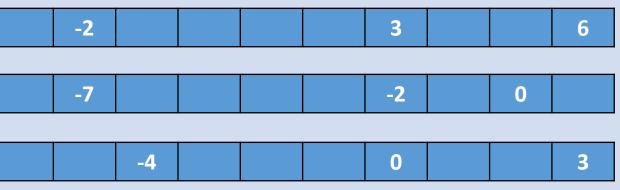
- Use a number line with pupils. The number line will be from -10 to +10.
- Get pupils to count in ones starting from a negative number and emphasising the zero.
- Use a number line with and without negative numbers and show how counting on is a move to the right and how counting back is a move to the left.
- Talk about the way we record temperature in Celsius. On very cold days our recording could be a negative number.

Pencil and Paper Activities Examples:

-10, +10, -9, +9, -8, +8, +7, -7

Autumn 1: Week 1: Mastering this Objective: Deeper Understanding

Place Value 1: Count backwards through zero to include negative numbers.


Teaching Sequence

Know that the value of any negative number is less than 0

- Know which of two negative numbers is greater
- Know which of two negative numbers is smaller
- Count accurately forwards from any negative number to any positive number, moving across 0
- Count accurately backwards from any positive number to any negative number, moving across 0
- Order a set of negative and positive numbers showing smallest to largest
- Order a set of negative and positive numbers showing largest to smallest

If pupils have mastered this objective they will be able to complete these activities independently:

Put in the missing numbers:

What temperature is 10 degrees lower than 4 degrees Celsius?

On a very cold day is the temperature more likely to be -4 degrees Celsius or +16 degrees Celsius? Put the numbers between -5 to +5 accurately on a number line.

Put the numbers between -15 to +1 accurately on a number line.

Put the numbers between -3 and + 3 accurately on a number line.

Autumn 1: Week 1: Working at greater depth

Place Value 1: Count backwards through zero to include negative numbers.

Teaching Sequence

smallest

Know that the	
value of any negative number is	Floor 10
less than 0 Know which of two	Floor 9
negative numbers is greater	Floor 8
Know which of two negative numbers is	Floor 7
smaller Count accurately	Floor 6
forwards from any negative number to	Floor 5
any positive number, moving	Floor 4
across 0 Count accurately	Floor 3
backwards from any positive	Floor 2
number to any negative number,	Floor 1
moving across 0 Order a set of	Floor 0
negative and	Floor - 1
positive numbers showing smallest to	Floor -2
largest Order a set of	Floor -3
negative and positive numbers	Floor -4
showing largest to	

Floor -5

This is a diagram of a hotel. There are 10 floors above ground and 5 floors below ground. The entrance is on Floor 0. The swimming pool is on Floor -3. The Laundry room is on Floor -5. Floor 10 is known as the penthouse. The restaurant is on Floor 9.

A man enters the hotel at the entrance and then goes to his room on Floor 6 before going for a swim. How many floors will he have travelled altogether.

Now make up more examples to try out on your friends.

What will the 19th number in this sequence be:

```
-4, -3, -2, .....
```

What will the 16th number in this sequence be:

```
-9, -8, -7, -5 .....
```

What will the 7th number in this sequence be:

-8, -6, -4.....

What will the 7th number in this sequence be:

-7, -5, -3,	
-------------	--

Autumn 1: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value 1: Count backwards through zero to include negative numbers.	Me	My Teacher
Can you order a set of negative and positive numbers showing largest or smallest first?	4	
Can you count accurately backwards from any positive number to any negative number, moving across the 0?		
Can you count accurately forwards from any negative number to any positive number, moving across the 0?		
Do you know which of 2 negative numbers is the smaller, eg7 is smaller than -4?		
Do you know which of 2 negative numbers is the greater, eg. -2 is greater than -5?		
Do you know the that the value of any negative number is less than 0?		

Year 4: Autumn 1

Week 2: Place Value

Count in multiples of 6, 7, 9, 25 and 1000.

Autumn 1: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Autumn 1: Week 2			
Objective Place Value 2	Count in multiples of 6, 7, number.	Count in multiples of 6, 7, 8, 9, 10, 25, 50, 100 and 1000 from any given number.		
	Can you count on c	or back as required?		
3000,4000		200, 300		
2315, 3315		173, 273		
8000,7000		500, 400		
4136, 3136		883, 783		

Autumn 1: Week 2: Practice and Consolidation

Place Value 2: Count in multiples of 6, 7, 9, 25 and 1000.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
 Sequence Count on and back in 1000s from 0 to 10,000 Count on and back in 10s from any given multiple between 0 and 10,000 Count on and back in 100s from 0 to 10,000 Count on and back in 50s from 0 to 1000 starting at any given multiple Count on and back in 25s from 0 to 1000 starting at any given multiple Count on and back in 9s from 0 to 1000 starting at any given multiple Count on and back in 9s from 0 to 1000 starting at any given multiple Count on in 8s from 0 to 1000 starting at any given multiple Count on in 7s from 0 	 Focus on 6, 7, 9 and 10 times tables. Check understanding by asking questions related to tables out of order. Now check inverses by asking how many 6s, 7s or 9s in 36, 42 or 81 respectively. Count rapidly forwards and backwards in 10, 100 and 1000s, then in 25s. Provide pupils with regular 'test' to check 	-
to 1000 starting at any given multiple Count on in 6s from 0	their rapid recall of table facts.	67, 58, 49, 40,
to 1000 starting at any given multiples		125, 150, 175, 200

Autumn 1: Week 2: Mastering this Objective - Deeper Understanding

Place Value 2: Count in multiples of 6, 7, 9, 25 and 1000.

	TeachingIf pupils have mastered this objective they will be able to complete theseSequenceactivities independently:		
A	Count on and back in 1000s from 0 to 10,000 Count on and back in 10s from any given multiple between 0 and 10,000	Look at these numbers: 1357; 357; 2357; 7357; 4357; 2357; 5357; 6357.	Look at these sequences: 121824 What will be the 6 th number?
>	Count on and back in 100s from 0 to 10,000	If you put them in order (smallest first) what will be the 5 th number?	212835 What will be the 10 th number?
A	Count on and back in 50s from 0 to 1000 starting at any given multiple Count on and back in 25s from 0 to 1000 starting at any given	If you carried on the sequence what would be the 9 th number?	125150175 What will be the 7 th number?
*	multiple Count on and back in 9s from 0 to 1000 starting at any given multiple	Amjal counts in 25s from 75. Circle the numbers that he will say.	Starting with 0 make a sequence of numbers up to 100 going up in 6s. Then starting at 0 make a sequence
>	Count on in 8s from 0 to 1000 starting at any given multiple	500 125 555 970 1000	of numbers up to 100 going up in 7s.
A	Count on in 7s from 0 to 1000 starting at any given multiple Count on in 6s from 0 to 1000 starting at	Helen counts in 7s from 28. Count the numbers she will say.	Which numbers appear in both sequences.
	any given multiple.	77 210 37 177 84	Now do the same but replace the 6 and 7 with 9 and 25.

Autumn 1: Week 2: Working at greater depth

Place Value 2: Count in multiples of 6, 7, 9, 25 and 1000.

Teachi Sequei	•	Activities for pupils working at greater depth:		
1000 10,00 > Cou in 10 mult and > Cou in 10 10,00 > Cou in 50	ont on and back Ds from any given tiple between 0 10,000 ont on and back D0s from 0 to 00 ont on and back Ds from 0 to 1000	 Make up a 4-digit number where the sum of the numbers is 9, e.g. 3312 or 4500. What is the largest number you can make? What is the second largest number you can make? What is the smallest number you can make? In relation to x9 what do you notice? 	Spot the Mistake What is wrong with these sequences of numbers? 950, 975,1000,1250 2006, 4006, 6006, 7006, 8006	
 mult Cou in 25 start mult Cou in 9s 	int on and back 5s from 0 to 1000 ting at any given	Amjal counts in 25s from 77. Circle the numbers that he will say. 502 127 557 972 1002 Work out a quick way of finding the answers.	Every time Joey fills his cement mixer he has enough cement to lay 25 bricks. Every day he aims to lay 1500 bricks on wall of a new house.	
 mult Couto 10 any Couto 10 any Couto 10 any Couto 10 any Couto 10 		If you start at 0 and count on in 6s, then in 7s, then in 9s and finally in 25 up to 1000. Eg, 6, 12, 18 7, 14, 21 9, 18, 27 25, 50, 75	How many times does he have to fill his cement mixer? Now create some more problems for your friend related to the cement mixer.	
		Make a list of the numbers you will say twice, three times and four times. Don't forget the answer could be 0 for some of them.		

Autumn 1: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value 2: Count in multiples of 6, 7, 8, 9, 10, 25, 50, 100 and 1000 from any given number.	Me	My Teacher
Can you count on in 6s from 0 to 1000 starting at any given number?		
Can you count on in 7s from 0 to 1000 starting at any given number?		
Can you count on in 8s from 0 to 1000 starting at any given number?		
Can you count on and back in 9s from 0 to 1000 starting at any given number?		
Can you count on and back in 25s from 0 to 1000 starting at any given number?		
Can you count on and back in 50s from 0 to 1000 starting at any given number?		
Can you count on and back in 100s from 0 to 10,000?		
Can you count on and back in 10s from any given number between 0 and 10,000?		
Can you count on and back in 100s from 0 to 1000?		

Year 4: Autumn 1

Week 3: Addition and Subtraction 1

Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction, where appropriate.

Autumn 1: Week 3: Pre-Learning Task

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Name	AUTUMN I: WEEK 3
Objective	Add and subtract numbers with up to 4-digits using the formal written
Addition and	methods of columnar addition and subtraction, where appropriate
Subtraction 1	

 Λ , μ ,

Can you calculate these accurately?

1323 1234+	1062 2025+		3276 1033-	1569 2163-	
1237 1459+	2723 1645+		3450 1126-	3819 2720-	
3451 2429+	1273 3566+		5353 2466-	7351 5675-	
5672 1345 1436+	8943 1923 4578+				

Autumn 1: Week 3: Practice and Consolidation

Addition and Subtraction 1: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction, where appropriate.

Teaching Sequence	Oral & Mental Activities Examples:	Pencil and Pa Examples:	per Activitie	es	
 Add numbers with 4-digits without exchanging Add numbers with 4-digits where the total of hundreds, tens or ones exceed 10 Subtract a 	number and get pupils to say the thousands value; or the hundreds value or the tens value in the number. • Practise orally working out the number of 10s in a number like	Look at the numb Break the numb 3000 + 600 + 80 + Now do the sam 4591 3592 8501 7019	er up in the fo + 2	bllowing way:	
 number from a 4-digit number which requires no exchanging Subtract a 		working out the number of 10s in a number like	How many 100s How many 10s ir How many 1000 How many 10s ir	n 381? s in 3581?	
number from a 4-digit number where exchanging is required	 1204. Practice orally working out the number of 100s in 	3578 <u>4580</u> +	5681 <u>2368</u> +	3477 <u>4623</u> +	1982 <u>7609</u> +
	2903	3487 <u>1653</u> -	6587 <u>3458</u> -	3462 <u>734</u> -	9825 <u>973</u> -

Autumn 1: Week 3: Mastering this Objective – Deeper Understanding

Addition and Subtraction 1: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction, where appropriate.

Teaching Sequence	If pupils have mastered this objective the activities independently:	hey will be able to complete these
 Add numbers with 4-digits without exchanging Add numbers with 4-digits where the total of hundreds, tens or ones exceed 	The pop group Three Slaves had two concerts, one in in Glasgow and one in Cardiff. 1578 people attended the Glasgow concert and 2688 attended the Cardiff concert. How many people attended the concerts altogether?	A biscuit factory produces 5670 packets of biscuits each day. 3578 are sent immediately to their shops in the South of England. How many biscuits are left in the factory after 3578 have been sent?
 Subtract a number from a 4-digit number which requires 		
 No exchanging Subtract a number from a 4-digit number where 	23562479367959803467+3792+	3002 7005 1987- 3569-
exchanging is required	2572 5239 <u>1932</u> + <u>4612</u> +	200450021523-2158-

Autumn 1: Week 3: Working at greater depth

Addition and Subtraction 1: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction, where appropriate.

Teaching Sequence

Activities for pupils working at greater depth:

Add numbers with 4-digits without exchanging

- Add numbers with 4-digits where the total of hundreds, tens or ones exceed 10
- Subtract a number from a 4-digit number which requires no exchanging
- Subtract a number from a 4-digit number where exchanging is required

Using the numbers 0-9, set them out in a 3x3 matrix as shown below. Make three 3-digit numbers with all the horizontal lines and add them together, eg, 174 + 628 + 395. Now do the same with the vertical lines, eg 163 + 729 + 485.

1	7	4
6	2	8
3	9	5

Can you organise the numbers in such a way that when you add both sets together your answer will be more than 2000; less than 2000; between 1500 and 2000, etc. Now, make up some more questions where you take away the sum of the 3 vertical numbers from the sum of the 3 horizontal numbers. Which of these number sentences have the answer that is between 550 and 600?

1174 – 611

3330 – 2779

9326 – 8777

- 666 = 8 5

What is the largest possible number that will go in the large rectangular box?

What is the smallest?

Explain your reasoning.

Autumn 1: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

digits us	and Subtraction 1 : Add and subtract numbers with up to 4- ing the formal written methods of columnar addition and tion where appropriate	Me	My Teacher
	Can you subtract a 4-digit number from another using columnar subtraction which requires exchange between the units, tens, hundreds or thousands (or any two of these)?		
	Can you subtract a 4-digit number from another using columnar subtraction which requires no exchange between the units, tens, hundreds or thousands?		
	Can you add 3 numbers with 4-digits using columnar addition where the units, tens or hundreds make more than 10?		
	Can you add 2 numbers with 4-digits together using columnar addition, where the units, tens or hundreds when added make more than 10?		
	Can you add 2 numbers with 4-digits together using columnar addition without exchange between units and tens?		

Year 4: Autumn 1

Week 4: Addition and Subtraction 2

Estimate and use inverse operations to check answers to a calculation.

Autumn 1: Week 4: Pre-Learning Task

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Name	Autum	Autumn 1: Week 4						
Objective Addition and Subtraction 2	Estimate and use inv	stimate and use inverse operations to check answers to a calculation						
	imate the answers to the to the nearest 10?	se	What do you notice ab	oout these calculation	ons?			
27 + 65			67 + 35					
39 - 13			102 - 67					
35 + 56								
26 + 19			135 + 121					
Can you quickly estimate these calculations to the			256 - 135					
345 - 190								
729 + 260			760 - 205					
845 + 190			205 + 555					
724 - 128								

Autumn 1: Week 4: Practice and Consolidation

Addition and Subtraction 2: Estimate and use inverse operations to check answers to a calculation.

Teaching Sequence

- Estimate the answer to any given addition involving two 2-digit numbers to the nearest 10.
- Estimate the answer to any given addition involving two 3-digit numbers to the nearest 100.
- Estimate the answer to any given addition involving two 3-digit numbers to the nearest 10.
- Estimate the answer to any given subtraction involving two 2-digit numbers to the nearest 10.
- Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 100.
- Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 10.
- Explain the term 'inverse' and exemplify with an example.
- Check the answer to any calculation with 2 and 3 digit numbers using the inverse.

Oral and Mental Activities Examples:

- Work with pupils on estimating addition and subtraction of 2 digit numbers by rounding (approximately) each 2-digit number to the nearest 10.
- Work with pupils on estimating addition and subtraction of 3 digit numbers by rounding (approximately) each 3-digit number to the nearest 100.
- Orally and mentally work with pupils so that they quickly understand inverse operation involving addition of 2, 3 or 4 digit numbers, eg, the inverse of 234 + 567 = 801 is 801 - 234 = 567
- Orally and mentally work with pupils so that they quickly understand inverse operation involving subtraction of 2, 3 or 4 digit numbers, eg, the inverse of 677 - 234 = 443 is 443 + 234 = 677

Pencil and Paper Activities Examples:

Estimate and then check: (to the nearest 10 or 100)

23 + 46 =234 + 456 =2367 + 15892050 + 2768 =

Estimate and then check: (to the nearest 10 or 100)

93 - 36 =	834 - 486 =
8387 - 3529	4050 - 2668 =

What do you notice about these calculations?

23 + 67 = 90	678 + 125 = 803
90 - 23 = 67	803 - 678 = 125

Check the answers of the following calculations by use the inverse operation.

Autumn 1: Week 4: Mastering this Objective – Deeper Understanding

Addition and Subtraction 2: Estimate and use inverse operations to check answers to a calculation.

Teaching Sequence

10.

100.

10.

10.

100.

10.

Explain the term

⊳

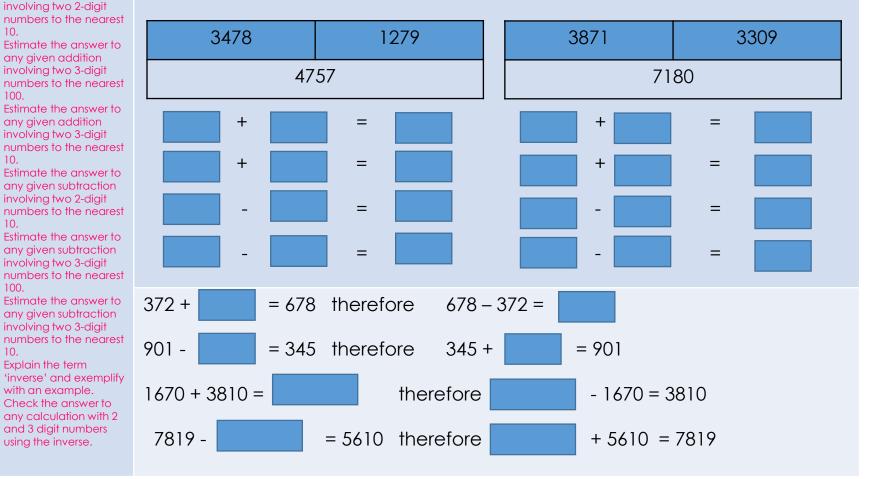
⊳

≻

⊳

⊳

≻

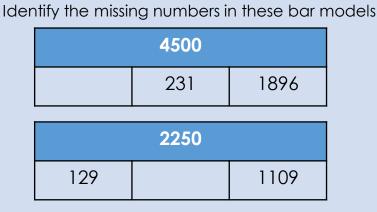

 \geq

Estimate the answer to

any given addition

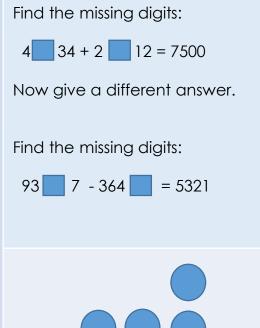
If pupils have mastered this objective they will be able to complete these activities independently:

Write down the four relationships you can see in the bar models:


Autumn 1: Week 4: Working at greater depth

Addition and Subtraction 2: Estimate and use inverse operations to check answers to a calculation.

Teaching Sequence


- Estimate the answer to any given addition involving two 2-digit numbers to the nearest 10.
- Estimate the answer to any given addition involving two 3-digit numbers to the nearest 100.
- Estimate the answer to any given addition involving two 3-digit numbers to the nearest 10.
- Estimate the answer to any given subtraction involving two 2-digit numbers to the nearest 10.
- Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 100.
- Estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 10.
- Explain the term 'inverse' and exemplify with an example.
- Check the answer to any calculation with 2 and 3 digit numbers using the inverse.

Activities for pupils working at greater depth:

Now select your own numbers to make up a bar model

5500	
5300	

Put in a number 0 to 9 in each circle so that each of the 3 rows and columns adds up to the same amount.

Autumn 1: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Addition and Subtraction 2 : Estimate and use inverse operations to check answers to a calculation	Me	My Teacher
Can you check the answer to any given subtraction by using the inverse method?		
Can you check the answer to any given addition involving 2 numbers by using the inverse method?		
Do you know the meaning of the term 'inverse'?		
Can you estimate the answer to any given subtraction involving two 3- digit numbers to the nearest 10?		
Can you estimate the answer to any given subtraction involving two 3-digit numbers to the nearest 100?		
Can you estimate the answer to any given subtraction involving two 2-digit numbers to the nearest 10?		
Can you estimate the answer to any given addition involving two 3- digit numbers to the nearest 10?		
Can you estimate the answer to any given addition involving two 3-digit numbers to the nearest 100?		
Can you estimate the answer to any given addition involving two 2-digit numbers to the nearest 10?		

Year 4: Autumn 1

Week 5: Geometry - Shape

Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.

Autumn 1: Week 5: Pre-Learning Task

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils books so that they can keep their own checks.

Name Au		Autumn 1: Week 5				
Objective Geometry:	Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.					
Which of the sets of lines are parallel?	A B		Draw 3 vertical lines of different sizes.			
Draw 2 different triangles: One with a right angle and one which has two equal sides. Is it possible to create a triangle that has two equal sides and a right angle?			Draw a quadrilateral with each side being of different length.			

Autumn 1: Week 5: Practice and Consolidation

Geometry 1: Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.

Teaching Sequence

Oral and Mental Activities Examples:

Sort shapes according to their properties using correct ٠ vocabulary Draw and \geq classify shapes based on given criteria, then sort

•

- **Remind pupils of** previous learning related to:
- Names of shapes, both 2D and 3D; the terms parallel, vertical and horizontal; right angles; auadrilateral;
- Give pupils a set of • properties and get them to draw them on a white board, eg, a triangle with a right angle.
- The use of 'feely bag' can still help some pupils who may be struggling with the use of correct terminology.

Pencil and Paper Activities Examples:

Describe what is the same and different about these three triangles:

Now do the same with a set of quadrilaterals.

Draw three different quadrilaterals that have different properties and then describe them.

Draw the following:

- A set of parallel lines;
- A vertical line
- A horizontal line
- A guadrilateral that includes a right angle

Classify different shapes:

- According to size
- According to number of parallel, vertical or horizontal lines
- According to lines of symmetry
- According to orientation


Autumn 1: Week 5: Mastering this Objective – Deeper Understanding

Geometry 1: Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

- Sort shapes according to their properties using correct vocabulary
- Draw and classify shapes based on given criteria, then sort

The side of square A is exactly half that of square B. How many of Square A will fit into Square B?

Is it always, sometimes or never true that the two diagonals of a rectangle meet at right angles? Explain your reasons.

John says that he can draw a right angled triangle which has another angle which is obtuse.

Is he right? Explain why.

Show or draw a quadrilateral that fits	Draw a non-right angled triangle		
both of these criteria.	with a line of symmetry.		

'Has exactly two equal sides.' 'Has exactly two parallel sides.'

What do you look for?

How many lines of symmetry does an equilateral triangle have?

Autumn 1: Week 5: Working at greater depth

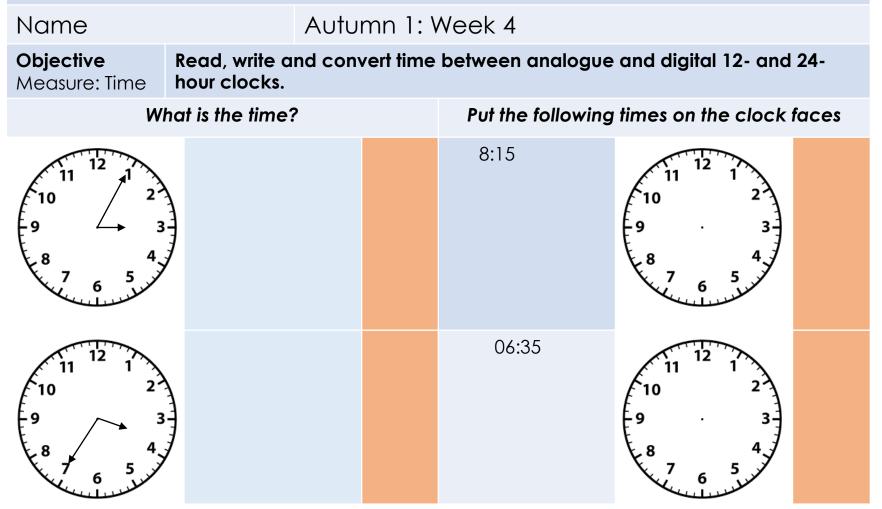
Geometry 1: Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.

Activities for pupi	ils working at greater depth:		
Describe a hidden shape to your friend so accurately that he or she can draw it so that it matches your original shape.		Create an interesting pattern that includes at least 2 horizontal, 2 vertical and another set of parallel lines.	
NOW SWITCH FOILES.		Now, design a special badge by using at least 2 horizontal, 2	
	There are 12 straws in this pattern. It makes up 4 small squares plus one large square. 5 in total.	vertical and another set of parallel lines.	
		Imagine a square cut along the diagonal to make two triangles.	
	Now take 20 straws and place them in such a way so as to make as many squares as you can.	Describe the triangles. Join the triangles on different sides to make new shapes. Describe them. (You could sketch them.)	
	You cannot bend or break the straws.	Are any of the shapes symmetrical? Convince me.	
	Activities for pupe Describe a hidde accurately that h that it matches y	accurately that he or she can draw it so that it matches your original shape. Now switch roles. There are 12 straws in this pattern. It makes up 4 small squares plus one large square. 5 in total. Now take 20 straws and place them in such a way so as to make as many squares as you can. You cannot bend or break	

Autumn 1: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry 1 : Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.			Me	My Teacher
Can you describe a shape accurately enough to someone so that they can draw it accurately?				
		Can you recognise horizontal lines, vertical lines and right angles in the classroom and outside the classroom?		
	Can you describe the properties of a given 2D shape by referring to the sides and angles; and vertical and horizontal lines?			
		Do you know what is meant by a right angle?		
		Do you know what is meant by parallel lines?		
		Do you know what is meant by vertical and horizontal lines?		


Year 4: Autumn 1

Week 6: Measurement-Time

Read, write and convert time between analogue and digital 12- and 24-hour clocks.

Autumn 1: Week 6: Pre-Learning Task

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils books so that they can keep their own checks.

Autumn 1: Week 6: Practice and Consolidation

Measurement - Time 1: Read, write and convert time between analogue and digital 12- and 24-hour clocks.

	aching quence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:	
A A	Know how to set out each analogue time in digital format Know how to set out each	Remind pupils of various terminology associated with time by demonstrating on a clock face and by	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Put the following times on a clock face: Quarter past eight Quarter to five Twenty five to nine
>	digital time in analogue format. Convert between analogue and digital and vice	 giving pupils clock faces to use; Talk pupils through the 24 hour clock system and the way various times are written down; Use small white boards for pupils to record times that are said to them. 	 Write the follow Twenty five p Nine minutes Twenty to fiv Eleven minutes 	s past six e
X	versa Explain how the digital clock system works, e.g. 10 past 2 in the afternoon =		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Put the following times on a clock face: 09:35 11:25 7:45
	2:10pm = 14:10.		clock system; Twenty past six	he following times as a time on a 24 hour in the morning; 9.35 am; 11.15 pm;

Twenty past six in the morning; 9.35 am; 11.15 pm; quarter to three in the afternoon; Ten to five in the evening; 8.15 pm; 8.15 am; half past three in the afternoon.

Autumn 1: Week 6: Mastering this Objective – Deeper Understanding

Measurement - Time 1: Read, write and convert time between analogue and digital 12- and 24-hour clocks.

	aching quence	If pupils have mastered this objective they will be able to complete these activities independently:			
A A A	Know how to set out each analogue time in digital format Know how to set out each digital time in analogue format. Convert between	than to 10:00am Is Jack right? Ex The time is 10:35 Jack says that it is to 23:00 hours.	ne time is closer to 11:00am n. xplain your answer. 5 pm. is closer to 22:00 hours than it	Put these times of the day in order, starting with the earliest time. A: Quarter to four in the afternoon B: 07:56 C: six minutes to nine in the evening D: 14:36	
•	analogue and digital and vice versa Explain how the digital clock system works, e.g. 10 past 2 in the afternoon = 2:10pm = 14:10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Set out this 'evening' time in digital and as a 24 hour clock and say it in analogue. Now do the same for this 'morning' time.	 It is quarter past three in the afternoon. Which of these times is correct and which is incorrect? 3.15am; 15:15hours; the big hand points to the three and the small hand is just past the three. Now make up some more to test our friends out. 	

Autumn 1: Week 6: Working at greater depth

Measurement - Time 1: Read, write and convert time between analogue and digital 12- and 24-hour clocks.

Teaching Activities for pupils working at greater depth: Sequence Know how to If it is 02:45 what will it be in 2 hours? Why do you think clock faces have set out each numbers 1 to 12 when there are 24 analogue time hours in the day? If it is 09:30 what was the time 2 and a half in digital format hours ago? Know how to \geq Make a case for staying with the 12 set out each hours face and make a case for digital time in If it is 7:30pm what will a 24 hour clock look inventing the 24 clock face. analogue like in 45 minutes? format. State your own preference before Convert \geq finding out your friends thoughts. If it is 11:50am what will a 24 hour clock look between like in 85 minutes? analogue and digital and vice Turkey is 2 hours ahead of us in the time versa Imran's swimming lesson lasts 50 zone so if it is 2pm in the UK it is 4pm in Explain how the \geq minutes and it takes 15 minutes digital clock Turkey. to change and get ready for system works, the lesson. What time does e.g. 10 past 2 in Dubai is 3 hours ahead of us and New York Imran need to arrive if his lesson the afternoon = is 5 hours behind us. 2:10pm = 14:10 finishes at 6.15pm? Set out the time on a 24 hour clock for Turkey, New York and Dubai if it 5.30 pm in

the UK and again if it is 8.15am in New York.

Autumn 1: Week 6: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Measurement 1 – Time : Read, write and convert time between analogue and digital 12- and 24-hour clocks.	Me	My Teacher
Can you confidently convert between analogue, digital and a 24 hour clock?		
Do you know how a 24 hour clock system works, eg. ten past two in the afternoon = 02:10pm = 14:10 hours?		
Do you know that a time said like this: 01:30, is set out as a 24 hour clock?		
Can you, with confidence, convert between analogue and digital?		
Do you know how to set out each analogue time in digital format, eg. ten past two = 02:10?		
Do you know that a time set out like this: 02:10, is digital?		
Do you know that a time said like this: ten past two, is analogue?		
Do you know that you can tell the time using either analogue method or a digital method?		

YEAR 4 : AUTUMN 2: Overview and Teaching Steps

WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6
1 Multiplication & Division - Mental	2 Multiplication & Division	3 Multiplication & Division	2 Measures Perimeter	1 Statistics	Consolidate and Assess
Recall multiplication and division facts for tables up to 12x12.	Recognise and use factor pairs and commutativity in mental calculations.	Multiply 2-digit and 3- digit numbers by a 1-digit number using formal written layout.	Measure and calculate the perimeter of a rectilinear figure (including squares) in cm and m.	Interpret and present discrete and continuous data using appropriate graphical methods, including: - bar charts - time graphs	Start this week by revising the learning covered in the Autumn term so as to ensure pupils are
 Count in 6s; forward and backwards. Recite the x6 tables up to x12, without error. Answer any calculation involving x6, out of order. Know that 2x6 is the same as 6x2 etc. Answer any calculation involving ±6, out of order. Count in 7s; forward and backwards. Recite the x7 table up to x12, without error. Answer any calculation involving ±7, out of order. Know that 3x7 is the same as 7x3 etc. Answer any calculation involving ±7, out of order. Count in 7s; forward and backwards. Recite the x7 table up to x12, without error. Answer any calculation involving ±7, out of order. Count in 9s; forward and backwards. Recite the x9 table up to x12, without error. Answer any calculation involving x9, out of order. Know that 4x9 is the same as 9x4 etc. Answer any calculation facts for all tables up to 12x12 out of order Recall division facts for all tables up to 12x12 out of order 	 Explain the term 'factor pair'. Know all the factors within all numbers to 10. Work out all the factors of any number to 144. Know the term 'square number' and recall all square numbers associated with numbers 1 – 144. 	 Multiply a multiple of 100 by a single- digit number mentally, using 2, 3, 4, 5, 6, 7, 8 and 9x. Multiply a 2- digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x. Multiply a 3- digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x. 	 Know the formula for calculating the perimeter of a rectangle (2 x length plus 2 x breadth) Know that the perimeter of an irregular shape can be calculated by adding the length of each individual side together 	 'Tell the story' of a bar chart with no scales on the axes 'Tell the story' of a bar chart with scales on the axes 'Tell the story' of a time graph with no scales on the axes 'Tell the story' of a time graph with no scales on the axes 'Tell the story' of a time graph with scales on the axes 'Tell the story' of a time graph with scales on the axes 'Tell the story' of a time graph with scales on the axes Construct a bar chart with correct labelling of both axes Plot information on a time graph 	fluent and secure with their basic skills. Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in the Autumn term. Analyse the results and use information to help focus the intervention and pre-teaching sessions, as needed, for the following term.

Year 4: Autumn 2

Week 1: Multiplication & Division

Recall multiplication and division facts for tables up to 12x12.

Autumn 2: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	
Objective: Multiplication & Division	Recall multipl

Rapidly calculate the following multiplications and divisions

6 x 7		3 x 9	
3 x 6		4 x 12	
4 x 7		6 x 12	
11 x 6		9 x 9	
9 x 7		11 x 9	
8 x 7		8 x 12	
How many 7s in 56?		How many 12s in 84?	
How many 6s in 42?		How many 9s in 99?	

Autumn 2: Week 1: Practice and Consolidation

Multiplication & Division: Recall multiplication and division facts for tables up to 12x12.

Teaching Sequence

- Count in 6s; forward and backwards.
- Recite the x6 tables up to x12, without error.
- Answer any calculation involving x6, out of order.
- Know that 2x6 is the same \triangleright as 6x2 etc.
- Answer any calculation involving ÷6, out of order.
- Count in 7s: forward and backwards.
- Recite the x7 table up to x12, without error.
- Answer any calculation involving x7, out of order.
- Know that 3x7 is the same as 7x3 etc.
- Answer any calculation involving ÷7, out of order.
- Count in 9s: forward and backwards.
- Recite the x9 table up to x12, without error.
- Answer any calculation involving x9, out of order.
- Know that 4x9 is the same as 9x4 etc.
- Answer any calculation involving ÷9, out of order.
- **Recall multiplication facts** > for all tables up to 12x12 out of order
- Recall division facts for all tables up to 12x12 out of order

Oral and Mental Activities: Examples:

• Start with a quick recall of the x4 and x8 tables.

- Introduce the 9x table showing how the ones figure reduces as the tens figure increases and how the sum of the digits is divisible by 9.
- Chant the x9 table and write them out.
- Now introduce the 6x and x7 tables. Pupils should chant them and write them down and make every effort to learn the inverses as well as
- respond out of order. Finally, introduce the •
 - x11 and x12 tables and look for the obvious patterns.

Examp	les:			
Rapid re	call of x6 ar	nd x7:		
4 x 7	5 x 6	6 x 7	9 x 6	
3 x 6	7 x 7	10 x 6	11 x 7	

-	• • • •
7	10 x 6

Pencil and Paper Activities

Co

11 x 7

	-	

10 x 7

12 x 6

omplete the missing numbers:					
			36		
63		1 x 9			
		6 x 9			
18			81		
		5 x 9			

How many 11s in 77? How many 12s in 84? How many 12s in 84?

3 x 9

8 x 9

12 x 9

12	45	21	
36	144	77	
12	84	60	
30	90	132	
14	121	18	
54	88	72	

How many	12s in 48?
How many	11s in 110?
How many	11s in 99?

x6	x7	x11	x9	x12
Place numbers into tables columns				

Place numbers into tables columns. Some may belong in more than one.

Autumn 2: Week 1: Mastering this Objective – Deeper Understanding

Multiplication & Division: Recall multiplication and division facts for tables up to 12x12.

Teaching Sequence

Count in 6s; forward and backwards.

- Recite the x6 tables up to x12, without error.
- Answer any calculation involving x6, out of order.
- Know that 2x6 is the same as 6x2 etc.
- Answer any calculation involving ÷6, out of order.
- Count in 7s; forward and backwards.
- Recite the x7 table up to x12, without error.
- Answer any calculation involving x7, out of order.
- Know that 3x7 is the same as 7x3 etc.
- Answer any calculation involving ÷7, out of order.
- Count in 9s; forward and backwards.
- Recite the x9 table up to x12, without error.
- Answer any calculation involving x9, out of order.
- Know that 4x9 is the same as 9x4 etc.
- Answer any calculation involving ÷9, out of order.
- Recall multiplication facts for all tables up to 12x12 out of order
- Recall division facts for all tables up to 12x12 out of order

If pupils have mastered this objective they will be able to complete these activities independently:

Boxing Eggs

How close can you get?

Using only the digits 6, 7, 8 and 9 in the calculation above, how close can you get to 400?

How close can you get to 500?

Now try 250.

Using Multiplication Facts

Explain how you could use: $63 \div 9 = 7$

To work out:

126 ÷ 9 =

252 ÷ 7 =

What if I bought 175 eggs?

Greater than or less than

Will the answer to the following calculations be greater or less (<, >) than 300?

Eggs are bought in boxes of 12. I need 140

eggs. How many boxes will I need to buy?

How many boxes will I need if I bought 200

32 x 7=

eggs?

78 x 6 =

27 x 12 =

47 x 9 =

Autumn 2: Week 1: Working at greater depth

Multiplication & Division: Recall multiplication and division facts for tables up to 12x12.

Teaching Sequence Activities for pupils working at greater depth:

2	>	Count in 6s; forward and backwards.	Sticker Mad	Sandcastle Building			
2	>	Recite the x6 tables up to					
		x12, without error.	2 friends have exactly the same number	In 5 c	lays Ariana I	built 80 sand	deastles
2	>	Answer any calculation			•		
7	>	involving x6, out of order. Know that 2x6 is the same as	of stickers.		•		sandcastles
		6x2 etc.	Jacqui has 3 full sheets and 4 loose	than	she built the	e day before	Э.
2	>	Answer any calculation	stickers.	How	many sando	castles did s	he build on
		involving ÷6, out of order.	Hamid has 2 full sheets and 12 loose		•		
>	>	Count in 7s; forward and		eaci	n day.		
		backwards.	stickers.				
	>	Recite the x7 table up to x12, without error.	Every full sheet has the same number of		Day 1		
>	>	Answer any calculation	stickers.		Day 2		
		involving x7, out of order.			Day 2		
2	>	Know that 3x7 is the same as 7x3 etc.	How many stickers in each full sheet?		Day 3		
>	>	Answer any calculation			-		
		involving ÷7, out of order.			Day 4		
2	>	Count in 9s; forward and					
	_	backwards.			Day 5		
	>	Recite the x9 table up to x12, without error.					
>	>	Answer any calculation	Henry has played for the school team six	Multi	ply a numbe	er by itself.	
		involving x9, out of order.	times more than Dan. They have played			•	rs larger by one
>	>	Know that 4x9 is the same as					• ·
		9x4 etc.	for the school team 49 times altogether.		the other fac		by one.
	>	Answer any calculation involving ÷9, out of order.	How often has Henry played and how	Look	at what hap	opens:	
5	>	Recall multiplication facts for	often has Dan played?				
		all tables up to 12x12 out of		6 x 6	- 24	10 x 10	-100
		order					
2	>	Recall division facts for all	Sally has collected eight times as many	5 X 7	= 35	9 x 1 1	= 99
		tables up to 12x12 out of	merit stickers as Abdul.				
		order	Altogether they have 81 merit stickers.	Does	this happer	for all case	2°S
					· ·		JJ -
			How many has Sally and how many has	Chec	ck and find a	501.	
			Abdul?				

Autumn 2: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

iplication & Division: Recall multiplication and division facts for es up to 12x12.	Me	My Teacher
Do you know the inverse of all table facts involving 6, 7, 9, 11 and 12x table, eg, how many 7s in 63?		
Can you recall all number facts for the 6, 7, 9, 11 and 12x table out of sequence?		
Can you recite all multiplication facts for the x12 table?		
Can you recite all multiplication facts for the x7 table?		
Can you recite all multiplication facts for the x11 table?		
Can you recite all multiplication facts for the x9 table?		
Can you recite all multiplication facts for the x6 table?		
Can you recite all multiplication facts for the x2; x3; x4; x5; x8 tables?		

Year 4: Autumn 2

Week 2: Multiplication & Division

Recognise and use factor pairs and commutativity in mental calculations.

Autumn 2: Week 2: Pre-Learning Task

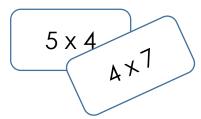
The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

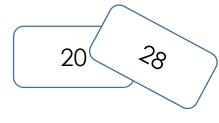
Name	Autumn 2: Week 2				
Objective: Multiplication & Division	Recognise and use fo	Recognise and use factor pairs and commutativity in mental calculations.			
Write down the factor pairs that make up these numbers				square of each o bers below	of the
42			7		
55			8		
80			9		
63			10		
77			6		
49			5		
110			4		
144			11		

Autumn 2: Week 2: Practice and Consolidation

Multiplication & Division: Recognise and use factor pairs and commutativity in mental calculations.

Teaching Sequence


Oral and Mental Activities: Examples:


- Explain the term 'factor pair'.
- Know all the factors within all numbers to 10.
- Work out all the factors of any number to 144.
- Know the term 'square number' and recall all square numbers associated with numbers 1 – 144.
- Introduce the term square as it relates to square numbers. Also, introduce the symbol (²).
- Use the term 'factor pair' with pupils and get them to rapidly recall a few factor pairs.
- Play a game of rapid recall using numbers between 1 and 144.
 Show a number and the pupils have to think of a factor pair.
- Similarly, show the factor pair and the pupils have to think of the number.
- Practise x tables for all numbers up to 12; practise them out of order; and, practise inverses.
- Introduce the term 'commutative' and explain it.

Pencil and Paper Activities Examples:

Create a set of cards.

Some will have factor pairs and others will have answers. Play a game where you match the factor pairs to the numbers.

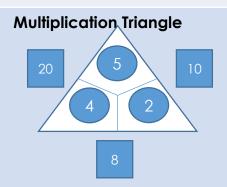
The following numbers are the square of which number.

25	36	49	9	4	100	64	81
Find the	e factor	pair for	the foll	owing	numbers	:	
45 How m factor p	,	66 he abov	90 re num	85 bers ho	28 ave more	36 than or	44 1e
How many 7s in 49? How many 12s in 84? How many 6s in 30? How many 4s in 48? How many 9s in 81? How many 8s in 32? How many 12s in 36? How many 11s in 77?							

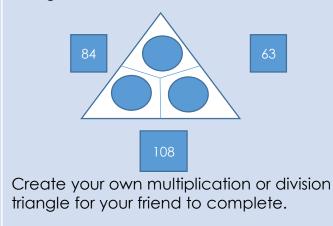
Autumn 2: Week 2: Mastering this Objective - Deeper Understanding

Multiplication & Division: Recognise and use factor pairs and commutativity in mental calculations.

aching quence	If pupils have mastered this objective the activities independently:	hey will be able to complete these
Explain the term 'factor pair'. Know all the factors within all numbers to 10. Work out all the factors of any number to 144. Know the term 'square number' and recall all square numbers associated with numbers 1 – 144.	Explain why it does not matter in which order the factors are when it comes to multiplication. For example: 6×7 or 7 X 6 are both 42 However, explain why it does matter when it comes to division. $42 \div 7 = 6$ is not the same as $7 \div 42$. Explain this to your friend.	Explain how many ways you could complete the calculations below. X = 72 X = 45
Hombers 1 – 144.	 A football team has the option of wearing 5 different tops, 4 different shorts and 3 sets of socks. One shirt is all white, one pair of shorts is white and one pair of socks is also white. How many possible combinations of kit can they choose for any match? If they had to wear the white shorts how many combinations can they now wear? If they are not allowed to wear white shirts; white shorts or white socks, how many combinations are they able to choose from? 	Use the inverse to check if the following calculations are correct: $23 \times 6 = 138$ $117 \div 9 = 14$ $34 \times 8 = 272$ $567 \div 9 = 63$


Autumn 2: Week 2: Working at greater depth

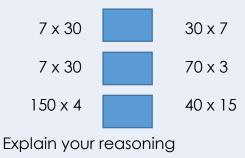
Multiplication & Division: Recognise and use factor pairs and commutativity in mental calculations.


Teaching Sequence

Activities for pupils working at greater depth:

- Explain the term 'factor pair'.
- Know all the factors within all numbers to 10.
- Work out all the factors of any number to 144.
- Know the term 'square number' and recall all square numbers associated with numbers 1 – 144.

Look at the example above. With the information provided complete the triangle below,


You have 2 dice. 1 is numbered 1 to 6 and the second is numbered -1 to -6.

When throwing 2 dice the numbers when multiplied made -12. What were the two possible numbers you could have?

When throwing 2 dice the numbers when multiplied made -15. How many pairs of numbers could there have been? What are they?

Place a <; >; or a = to ensure these statements are correct.

Autumn 2: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Recognise and use factor pairs and commutativity in mental calculations.	Ме	My Teacher
Do you Know the term 'square number' and know all the square numbers associated with numbers 1 to 144 ?		
Can you work out all the factors within any number up to 144?		
Do you know all the factors within all numbers to 10 for numbers associated with x6; x7; x8; x9; x11 and x12?		
Do you know all the factors within all numbers to 10 for numbers associated with x2; x3; x4; x5 and x10?		
Do you know the term 'prime factor' and what it means?		

Year 4: Autumn 2

Week 3: Multiplication & Division

Multiply 2-digit and 3-digit numbers by a 1-digit number using formal written layout.

Autumn 2: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Autu	mn 2: V	Veek 3		
Objective: Multiplication & Division	Multiply 2-digit and 3 layout.	-digit nui	mbers by a 1-digit	number using form	nal written
25 <u>x 6</u>	75 <u>x 7</u>		26 <u>x 9</u>	56 <u>x 7</u>	
137 <u>x 8</u>	429 <u>x 9</u>		257 <u>x 8</u>	290 <u>x 6</u>	
320 <u>x 10</u>	167 <u>x 11</u>		269 <u>x 10</u>	365 <u>x 11</u>	

Autumn 2: Week 3: Practice and Consolidation

Multiplication & Division: Multiply 2-digit and 3-digit numbers by a 1-digit number using formal written layout.

	eaching equence	Oral and Mental Activities: Examples:		il and ples:	Pape	er Acti	vities					
A .	Multiply a multiple of 100 by a single-digit number mentally, using 2, 3, 4, 5, 6, 7, 8 and 9x. Multiply a 2-digit number by a	 Remind pupils about multiplying by 10 and show what happens when you multiply by 100. Create a quick fire answer system to multiplying by 100. 	67	23	followir 156 followir 476	89	256	12	489 123	236 360	45: 147	2 89
•	single digit number using 2, 3, 4, 5, 6, 7, 8, 9x. Multiply a 3-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x.	 Show a card with a single or two-digit number on and get pupils to multiply number by 100 and to respond as quickly as possible. 		od of r 7	he follo nultiplic 123 x 401 x 126 x	cation. 7 (9	2	mplete 237 x 6 502 x 8 25 x 12		167 154	x9	nar
		 columnar system, a multiplication of a 2- digit number by x2; x3; x4; x5; x6; x7; x8; or x9 Move on to demonstrate the multiplication of a 3- digit number by a single digit. 		 multiplication of a 2- digit number by x2; x3; x4; x5; x6; x7; x8; or x9 Move on to demonstrate the multiplication of a 3- digit number by a Make up 25 cards with 2 and 3-digit numbers on them. Show your friend one at a time and see how quickly s/he co multiply by 10 or multiply by 100. Time him or her for one minute and see how many they get right. Then swap places. 								

Autumn 2: Week 3: Mastering this Objective – Deeper Understanding

Multiplication & Division: Multiply 2-digit and 3-digit numbers by a 1-digit number using formal written layout.

Teaching Sequence	If pupils have mastered this objective the activities independently:	hey will be able to complete these
 Multiply a multiple of 100 by a single-digit number mentally, using 2, 3, 4, 5, 6, 7, 8 and 9x. Multiply a 2-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x. Multiply a 3-digit number by a single digit 	method of multiplication: 562 765 892 $\underline{x \ 8}$ $\underline{x \ 9}$ $\underline{x \ 7}$ 483 284 501 $\underline{x \ 6}$ $\underline{x \ 8}$ $\underline{x \ 9}$	Find the missing digit: $6 \times 7 = 483$ $58 \times 8 = 4,648$ $2 \times 9 \times 9 = 2,151$ $6 \times 4 \times 5 = 3270$
number using 2, 3, 4, 5, 6, 7, 8, 9x.	How close can you get? X 7 Using the digits 3, 4 and 6 in the calculation above, how close can you get to 4500? What is the largest product you can make? What is the smallest product you can make?	Put the cards into the correct place in the table. 5×7 8×3 10×2 9×6 11×5 7×7 5×7 8×4 Less than Between 40 More than 40 and 50 50

Autumn 2: Week 3: Working at greater depth

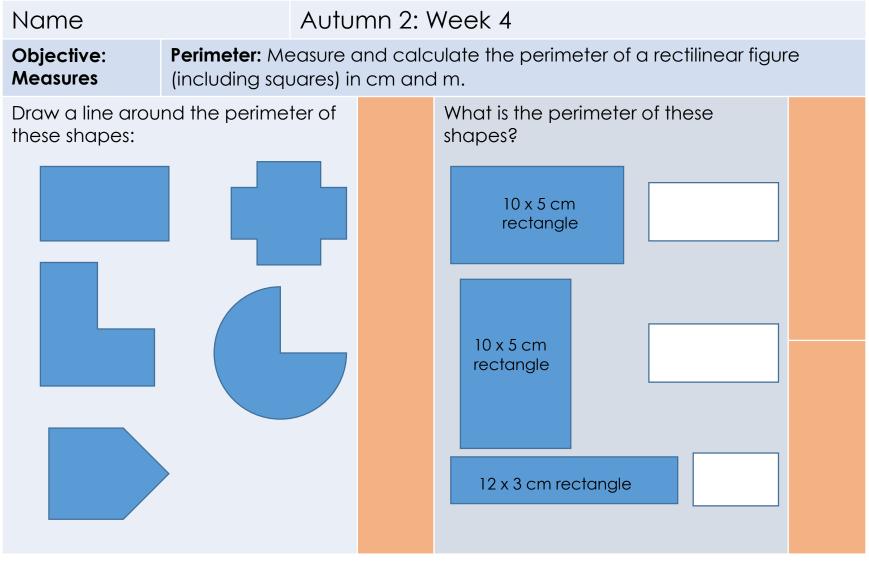
Multiplication & Division: Multiply 2-digit and 3-digit numbers by a 1-digit number using formal written layout.

Teac Sequ	hing Jence	Activities for pupils working at greater d	lepth:
m b n 3 9 2 N N si n 3 2 N	Multiply a multiple of 100 by a single-digit number mentally, using 2, 3, 4, 5, 6, 7, 8 and 9x. Multiply a 2-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x. Multiply a 3-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x.	 Electric Bill The electric bill for a house was £875 per year. However, after putting in energy saving bulbs the bill was reduced to £58 per month. Work out how much the electricity bill now is. Find out how much money they saved on the electric after switching to energy saving bulbs. 	Sum and the Product The sum of two numbers is 32 and their product is 192. What are the two numbers? The sum of two numbers is 23 and their product is 112. What are the two numbers?
si n		Football Stickers Aleem has 8 times more football stickers than Jo. Together they have 81. How many stickers does each one have? Explain how you reasoned this out. Now try this one: Harry has 4 times more marbles than Jill. Together they have 55 marbles. How many has each got?	Monthly payments A mother decided to pay £75 each month towards all her Christmas presents. At the end of the year she was told that she had saved £60 too much. How much did all her Christmas presents cost? How much could she have paid each month so that she had the right amount?

Autumn 2: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Multiply 2-digit and 3-digit numbers by a 1-digit number using formal written layout.	Me	My Teacher
Can you multiply a 3-digit number by x10; x11 and x12 using formal layout?		
Can you multiply a 3-digit number by all single digit numbers using formal layout?		
Can you multiply a 2-digit number by x10; x11 and x12 using formal layout?		
Can you multiply a 2-digit number by all single digit numbers using formal layout?		
Can you multiply a multiple of 100 by x10; x11 and x12?		
Can you multiply a multiple of 100 by all single digit numbers?		
Can you multiply a 2-digit number by 100?		
Can you multiply a 2-digit number by 10?		


Year 4: Autumn 2

Week 4: Measures: Perimeter

Measure and calculate the perimeter of a rectilinear figure (including squares) in cm and m.

Autumn 2: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Autumn 2: Week 4: Practice and Consolidation

Measures: Perimeter: Measure and calculate the perimeter of a rectilinear figure (including squares) in cm and m.

Teaching Oral and Mental **Pencil and Paper Activities** Sequence **Activities: Examples: Examples:** Know the Go outside onto the Describe what a perimeter is to your friend and check that formula for school playground or you both agree that the description is accurate. calculating field and show pupils perimeter of a what the perimeter is. rectangle (2 x Find the perimeter of the following shapes: Allow pupils the length plus 2 x opportunity to estimate breadth) what the perimeter is Know that >before they actually perimeter of irregular shape measure. can be • Show pupils regular calculated by shapes and again adding length of emphasise what the 10 cm each individual perimeter is. side together Explain how you could build in a formula for rectangles and squares. 10 cm Pupils need to measure accurately to enable them to find the 6 cm perimeter of given shapes.

3 cm 8 cm All six sides are 6 cm long

5 cm

All 3 sides

6 cm

long.

Autumn 2: Week 4: Mastering this Objective - Deeper Understanding

Measures: Perimeter: Measure and calculate the perimeter of a rectilinear figure (including squares) in cm and m.

leaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:			
Know the formula for calculating perimeter of a rectangle (2 x length plus 2 x breadth) Know that perimeter of irregular shape can be calculated by adding length of each individual side together	Different possibilities The perimeter of a rectangular field is 225 metres. What could the length and breadth of the field be? Think of at least three possibilities. What about if the perimeter was 175 metres?	This T shape is made up of 2 rectangles of the same size. The rectangles measure 10 cm long and 2 cm wide. Firstly, draw around the perimeter of		
	If the perimeter of a 4 x 6 cm brick is 20 cm does the perimeter double if you put another brick on top of the first; and does it triple when you add another brick on top of that one? Explain your reasoning.	the T shape. What does the perimeter measure? If the same two rectangles were organised into the shapes below would the perimeter be the same?		

(c) Focus Education (UK) Ltd

65

Work out the perimeter of each to

find out which shape has the

greatest perimeter.

Autumn 2: Week 4: Working at greater depth

Measures: Perimeter: Measure and calculate the perimeter of a rectilinear figure (including squares) in cm and m.

Teaching Activities for pupils working at greater depth: Sequence Know the The width of a rectangle is 3 metres less The shape below is made up of four formula for than the length. rectangles. The length is four times as long calculating The perimeter is between 20 and 30 metres. as the width. The length of each rectangle perimeter of a is 1.6 metres. What is the perimeter of the rectangle (2 x What could the dimensions of the rectangle square on the inside? length plus 2 x be? breadth) Know that \geq Explain your reasoning. perimeter of irregular shape can be Put five bricks together in such a way so as calculated by to maximise the perimeter of the shape you adding length of have created. each individual Each brick measures 30 cm x 10 cm side together Two examples have been done for you. Work out the perimeter of Create similar shapes and provide enough each shape you have information for your friends to find the created. perimeter of part of the shape.

Autumn 2: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Measures: Perimeter: Measure and calculate the perimeter of a rectilinear figure (including squares) in cm and m.		My Teacher
Can you use your knowledge of perimeters to work out problems related to different shapes?		
Can you work out the perimeter of two rectangles placed side by side to create an irregular shape?		
Can you use a formula for working out the perimeter of a rectangle when given the dimensions?		
Can you identify the perimeter of a given shape and mark it carefully?		
Can you describe the term 'perimeter'?		

Year 4: Autumn 2

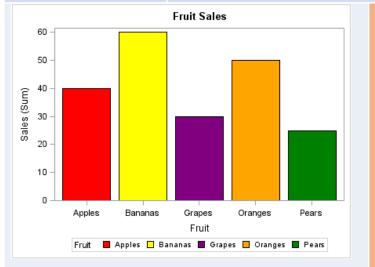
Week 5: Statistics

Interpret and present discrete and continuous data using appropriate graphical methods, including:

- bar charts
- time graphs

Autumn 2: Week 5: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.


Name

Autumn 2: Week 5

Objective: Statistics

Interpret and present discrete and continuous data using appropriate graphical methods, including:

- bar charts
- time graphs

This bar chart tells you how many people bought the fruit shown during one day. How many people bought bananas?

How many people bought apples?

How many more people bought bananas rather than grapes?

This time graph shows the temperature during a week in the summer.

Why do we know that this was a week in the summer and not winter?

What is the difference between the hottest and coolest day?

Autumn 2: Week 5: Practice and Consolidation

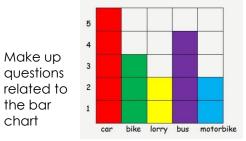
Statistics: Interpret and present discrete and continuous data using appropriate graphical methods, including:

Make up

the bar

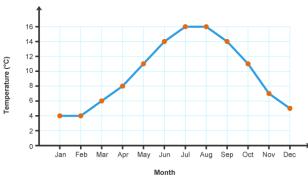
chart

- bar charts
- time graphs


Teaching **Oral and Mental** Sequence

- 'Tell the story' of a bar chart with no scales on the axes
- 'Tell the story' of a bar chart with scales on the axes
- 'Tell the story' of >a time graph with no scales on the axes
- \triangleright 'Tell the story' of a time graph with scales on the axes
- Construct a bar chart with correct labelling of both axes
- Plot information >on a time graph

Pencil and Paper Activities Examples: Activities: Examples:


- Use information collected from the pupils to create a bar chart where there are no scales on the axes.
- Physically create the bar chart with the pupils reminding them of key issues associated with the axes.
 - Move on to create another bar chart with the same information but this time introducing scales on the axes.
- Emphasise that a bar chart should tell a story.
- Pupils should aim to create their own bar chart using information they have collected on their own
- Consider a time graph.
- Read and interpret a time araph before moving on to create their own time graph using information provided for them.
- Tell the story of the time graph.

Remind pupils of simple bar charts, such as the one below about favourite transport

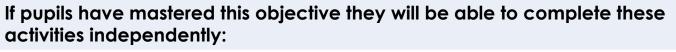
Collect information about pupils in the class. It can be related to something that is their favourite or their height, weight, shoe size, etc.

Create a bar chart with no scale on the axes and one with a scale on the axes.

Think of two other questions you could ask your friend.

Look at the time graph above. It shows the average temperature in the UK during the year.

In which two months is the temperature at its hiahest? In which two months is the average temperature 14°C?

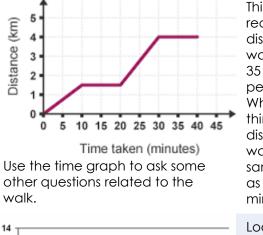

Autumn 2: Week 5: Mastering this Objective – Deeper Understanding

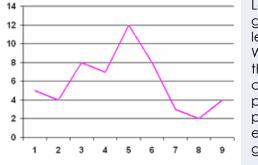
Statistics: Interpret and present discrete and continuous data using appropriate graphical methods, including:

- bar charts
- time graphs

Teaching Sequence

- 'Tell the story' of a bar chart with no scales on the axes
- 'Tell the story' of a bar chart with scales on the axes
- 'Tell the story' of a time graph with no scales on the axes
- 'Tell the story' of a time graph with scales on the axes
- Construct a bar chart with correct labelling of both axes
- Plot information on a time graph


Eye Colours in our Class


Give 3 pieces of information you have learnt about this bar chart.

Create your own bar chart based on either eye or hair colour in relation to your class.

Create a bar chart about the amount of weekly pocket money you and your friends have.

Decide how best to present the information, including the use of appropriate scales. After creating the bar chart, what information have you learnt about you and your friends' pocket money? Now create a bar chart about an interesting topic you want to know more about.

This time graph records the distance Harry walked over a 35 minute period. Why do you think the distance walked is the same after 30 as well as 40 minutes?

Look at the graph to the left. Work out what this graph could be and provide a plausible explanation to go with it.

Don't forget there is no right or wrong answer to this problem.

Autumn 2: Week 5: Working at greater depth

Time (minutes)

0

1

2

3

4

5

6

7

8

9

10

Statistics: Interpret and present discrete and continuous data using appropriate graphical methods, including:

Look at the

the table.

table. Make up

a story that fits

- bar charts
- time graphs

Teaching Sequence

Activities for pupils working at greater depth:

Temperature (°C)

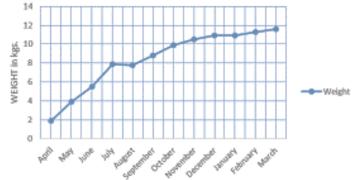
16

23

32

43

54


- 'Tell the story' of a bar chart with no scales on the axes
- 'Tell the story' of a bar chart with scales on the axes
- 'Tell the story' of a time graph with no scales on the axes
- 'Tell the story' of a time graph with scales on the axes
- Construct a bar chart with correct labelling of both axes
- Plot information on a time graph

54Present the
same
information in
the form of a
time graph.60same
information in
the form of a
time graph.

Create your own time graph which records the number of words you will have written in 10 minutes.

Record the number of words written after each minute. You may need a friend to help you.

After creating your time graph is there anything you have learnt about your stamina for writing? Weight of puppy over first year of life.

Look at the time graph above. Using the graph to tell a story, think of five pieces of information you have learnt about this puppy by studying the graph.

Think of three questions you could ask your friends about the graph.

Autumn 2: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

 Statistics: Interpret and present discrete and continuous data using appropriate graphical methods, including: bar charts time graphs 	Me	My Teacher
Can you collect information and present it in the form of a time graph?	4	
Can you collect information and present it in the form of a bar chart?		
Can you read and interpret a time graph which has scales on the axes?		
Can you 'tell a story' when reading a time graph?		
Can you read and interpret a time graph which has no scales on the axes?		
Can you read a bar chart which has scales on the axes?		
Can you 'tell a story' when reading a bar chart?		
Can you read and interpret a bar chart which has no scales on the axes?		

Year 4: Autumn 2

Week 6: Consolidate and Assess

- Start this week by revising the learning covered in the Autumn term so as to ensure pupils are fluent and secure with their basic skills.
- Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in the Autumn term.
- Analyse the results and use information to help focus the intervention and pre-teaching sessions, as needed, for the following term.

Year 4: Autumn 2: Week 6

The focus of the consolidation should be the following aspects:

- Count on/back in steps of 2s, 3s, 4s 5s, 8s, 10s
- Count on/back in multiples of 6 and 9 from 0
- Recall the 2, 3, 4, 5, 6, 7, 8, 9 and 10 times tables and the derived division facts
- Count on/back in 25s, 50s, 100s from 0 to 5000 and in 1000s from 0 to 10,000 and beyond
- Find 10/100/1000 more or less than a given number beyond 1000
- Read and write all numbers to at least 10,000 in both numerals and words
- Order a set of numbers (4 and/or 5) to 10,000 and beyond in increasing and decreasing value
- Compare numbers up to 10,000 and beyond using =, <, > symbols
- Round numbers up to 10,000 to the nearest 10, 100 or 1000
- Count in tenths, hundredths, read and write numbers with up to 2 decimal places and compare numbers with the same number of decimal places up to 2 decimal places
- Add/subtract: 3-digit and 1-digit numbers, a 3-digit number and tens and a 3-digit number and hundreds, combinations of 2 and 3 digit numbers
- Count on/back in $\frac{1}{2}$ s , $\frac{1}{3}$ s , $\frac{1}{10}$ s and other unit fractions including on a number line
- Find complements to 100 and to 1000 and recall addition and subtraction facts for 100 and 1000 (e.g. 37 + 63 = 100, 63 + 37 = 100, 100 37 = 63, 100 63 = 37, 530 + 470 = 1000)
- Although practise and consolidation should be on-going through each half term, during Week 6 there should be greater opportunity taken to check pupils' learning and understanding.
- Summative and Formative assessment procedures should help teachers gain a clear picture as to which pupils are at different stages, including mastery and greater depth.

	YEAR 4 : SPR	ING 1: Overvie	ew and Teachi	ng Steps	
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6
3 Place Value Roman Numerals	1 Fractions	2 Fractions	2 Geometry Position and Direction	3 Measures Area	4 Multiplication & Division
Read Roman numerals to 100 and understand that over time, the numeral system changes to include the concept of zero and place value.	Recognise and show, using diagrams, families of common equivalent fractions.	Add and subtract fractions with the same denominator.	Describe positions on a 2D grid as coordinates in the first quadrant	Find the area of rectilinear shapes by counting squares.	Divide 2-digit and 3-digit numbers by a 1-digit number using formal written layout with no remainder.
 Read Roman numerals from 1 to 10 Read Roman numerals to 50 Read Roman numerals to 100 Write Roman numerals from 1 to 10 Write Roman numerals to 50 Write Roman numerals to 50 Write Roman numerals to 100 	 Know all equivalent fractions of 1/2 up to and including the denominator 12 Know all equivalent fractions of 1/4 up to and including the denominator 12 Know all equivalent fractions of ³/₄ up to and including the denominator 12 Know all equivalent fractions of 1/3 up to and including the denominator 12 Know all equivalent fractions of 1/3 up to and including the denominator 12 Know all equivalent fractions of 2/3 up to and including the denominator 12 	 Add two fractions with the same denominator that add up to more than one whole. Subtract one fraction from another with the same denominator crossing one whole. 	 Read coordinates using both axes Plot points using both axes Answer questions involving coordinates Create shapes by plotting points in first quadrant 	 Count squares to identify the area of a shape. Draw shapes of a given size, e.g. 20 squares. Introduce the term square centimetre/c m² Use the formula for calculating the area of a rectilinear shape (I x b) 	 Divide a multiple of 10 by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 2-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 3-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 3-digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder.

Year 4: Spring 1

Week 1:

Read Roman numerals to 100 and understand that over time, the numeral system changes to include the concept of zero and place value.

Spring 1: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Spring	g 1: We	eek 1						
Objective: Place Value		Read Roman numerals to 100 and understand that over time, the numeral system changes to include the concept of zero and place value.								
Write these	Roman N	Numerals ir	ו TU	Write these TU numbers as Roman Numerals						
LX				36						
XXX111				70						
LXX11				59						
1X				88						

Spring 1: Week 1: Practice and Consolidation

Place Value: Read Roman numerals to 100 and understand that over time, the numeral system changes to include the concept of zero and place value.

Teaching Sequence	Oral and Mental Activities: Examples	Pencil and Paper Activities Examples:
 Read Roman numerals from 1 to 10 Read Roman numerals to 50 Read Roman 	 Although the construct is specifically about Roman Numbers it would be healthy to have a look at different systems including Ancient Egyptian and Arabic. Pupils will need to remember the key 	Make a chart showing the following Roman Numerals: 1 to 10 (1 to X) All 10 numbers between 10 and 100 (X to C) All 5 numbers from 5 to 100 (V to C)
 numerals to 100 Write Roman numerals from 1 to 10 Write Roman numerals to 50 Write Roman 		Take a set of 25 cards with a set of assorted Roman Numerals between 1 and 100 on them. Have a second set of 25 cards with the corresponding TU numbers on them. Play a game of snap with doubles so as to help remember the equivalent Roman Numerals.
numerals to 100	letters of V; X; L and C as in 5; 10; 50	Write down the Roman Numeral equivalent to these numbers:
	and 100. • They will also need	6 16 26 36 46 56 66 76
	to be taught how the one or ten number preceding the letters will be in	4 14 24 34 44 54 64 74
		Write down the TU number equivalent to these Roman Numerals:
	front of the new letter, eg, 1V; 1X; XL and XC.	VII XXII LXX LXXIII LV C

Spring 1: Week 1: Mastering this Objective – Deeper Understanding

Place Value: Read Roman numerals to 100 and understand that over time, the numeral system changes to include the concept of zero and place value.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

TU

16

46

88

 Read Roman numerals from 1 to 10
 Read Roman

Co

Ro

- numerals to 50
 Read Roman
 numerals to 100
- Write Roman numerals from 1 to 10
- Write Roman numerals to 50
- Write Roman numerals to 100

mplete the following tables:											
oman	TU		Roman								
XX11											
	23		XX1V								
LX											
	9										
LV11			XXV11								
	77										
С			LXX11								
				-							

Write the answers in Roman Numerals and in TU:

- What is X11 more than XX11?
- What XX less than L?
- What is XV11 more than LX?
- What is twice XX11?

Put these Roman Numerals in order with the lowest value first.									
1	XXX111	LX	XX1V	XXXV1	1				
2	V111	1X	111	ХХ	XX11				
3	LXXX11	LXX	111 LX	XIV L	XX				
4	XXV111	XX	√1 XX	XX111	XL				
Show the Roman Numeral that comes next in these sequences:									

111;	1V;	V;	V1;	;
XX11;	XX1V;	XXV	/1;	;

LX; LXV; LXX; LXXV; ____; ___

Spring 1: Week 1: Working at greater depth

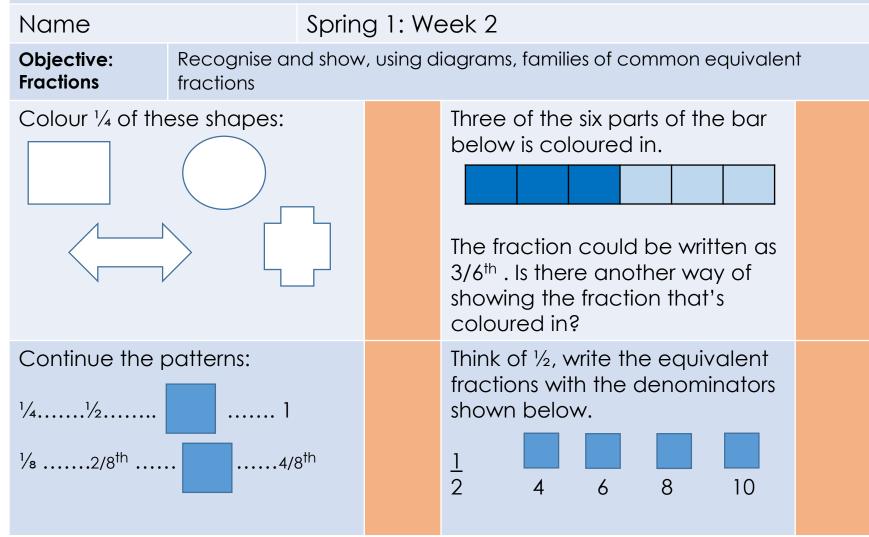
Place Value: Read Roman numerals to 100 and understand that over time, the numeral system changes to include the concept of zero and place value.

Teaching Sequence	Activities for pupils working at greater of	depth:
 Read Roman numerals from 1 to 10 Read Roman numerals to 50 Read Roman numerals to 100 Write Roman numerals from 1 to 10 Write Roman numerals to 50 Write Roman 	Add and subtract the following Roman Numerals and give answers as both Roman and TU numbers. XXV + XX11 LX - XX1V LX + XXV1 C - LXX11 XXV11 + XXXV111 LXX - V111	The sum of two Roman Numbers is LXXV. One of the two Roman Numbers is 10 greater than the other. Write out the two numbers in Roman numerals. The product of two Roman numbers is XX1V. One of the two numbers is11 less than V. What are the two numbers?
numerals to 100	Look at the following Roman Numerals: X X V L 1 1 1 X X Make the largest number you can using as many of these Roman Numerals as you can. Now make the smallest number you can using at least 5 of the symbols shown.	Create a new numeral system. You will need to have symbols for the following: 1 Explain your system to your friends and make sure it stands up to the scrutiny of your friends. 50 When are you satisfied it works set a few problems for your friends.

Spring 1: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value: Read Roman numerals to 100 and understand that over time, the numeral system changes to include the concept of zero and place value.	Me	My Teacher
Can you create your own number system based on what you know about our system and the Roman system?		
Can you quickly find the equivalent TU value for all Roman Numerals between 1 and 100?		
Can you write any Roman Numeral between 1 and 100?		
Can you immediately say what the Roman Numeral is for 50 and 100?		
Do you know the Roman Numeral equivalent for all ten numbers between 10 and 100?		
Can you quickly find the equivalent TU value for all Roman Numerals between 1 and 10?		
Do you know and recognise all Roman Numerals with values of 1 to 10 (1 to X)?		


Year 4: Spring 1

Week 2: Fractions

Recognise and show, using diagrams, families of common equivalent fractions

Spring 1: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

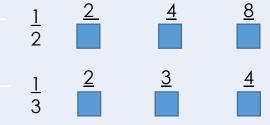
Spring 1: Week 2: Practice and Consolidation

Fractions: Recognise and show, using diagrams, families of common equivalent fractions

Teaching **Oral and Mental** Sequence Activities: Examples: **Examples:** Know all equivalent • Use metre sticks that fractions of 1/2 up have been divided to and including the into 2; 4; and 8 and denominator 12 show how $\frac{1}{2}$ on one is Know all equivalent \geq fractions of 1/4 up the same as 2/4 and to and including the 4/8 on the other two. denominator 12 Now do the same Know all equivalent ≻ with divisions of 3; 6; fractions of ³/₄ up to 9; and 12. and including the Take pupils through denominator 12 the number of ways Know all equivalent ≻ that ¹/₂ could be fractions of 1/3 up shown, and the $\frac{1}{4}$ to and including the and then $\frac{1}{4}$. denominator 12 Take pupils through Know all equivalent the idea that if the fractions of 2/3 up denominator is twice to and including the the numerator then denominator 12 <u>1</u> 2 the fraction is equivalent to 1/2. If the denominator is four times the numerator <u>2</u> <u>3</u> then the fraction is

equivalent of a $\frac{1}{4}$,

etc.


Pencil and Paper Activities

Look at the following fraction bars:

1 Whole											
1/2 1/2											
۱,	1/4 1/4				/4	1)	/4				
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8				

This shows that 1 whole is equivalent to $2 \times \frac{1}{2}$; $4 \times \frac{1}{4}$; or $8 \times \frac{1}{8}$ So if you took $\frac{1}{2}$ it could be written as $\frac{2}{4}$ or $\frac{4}{8}$. Create the same bar for the 10th group (showing $\frac{1}{2}$; 1/5th and 1/10th; and then the 12th group (showing $\frac{1}{2}$; 1/6th and 1/12th)

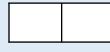
Complete the following family equivalents:

Now you have the hang of it do the same for 1/4 family and then the $\frac{3}{4}$ family.

Spring 1: Week 2: Mastering this Objective – Deeper Understanding

Fractions: Recognise and show, using diagrams, families of common equivalent fractions

Teaching Sequence


If pupils have mastered this objective they will be able to complete these activities independently:

- Know all equivalent fractions of 1/2 up to and including the denominator 12
- Know all equivalent fractions of 1/4 up to and including the denominator 12
- Know all equivalent fractions of ¾ up to and including the denominator 12
- Know all equivalent fractions of 1/3 up to and including the denominator 12
- Know all equivalent fractions of 2/3 up to and including the denominator 12
- Know all equivalent fractions of 1/8 up to and including the denominator 24
- Know all equivalent fractions of 1/5 up to and including the denominator 20

The picture below represents ³/₈th of the full rectangle. Draw the full rectangle. Do it in 2 different ways:

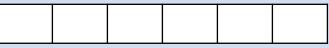
The picture below represents 2/9th of a square. Draw the full square

0

0

Look at the number line below:

Place $\frac{1}{4}$; $\frac{3}{8}$ and $\frac{1}{10^{\text{th}}}$ on the line.


Now look at the following number line:

1/2

3/4

Place $\frac{1}{8};$ $\frac{7}{8}$ and $1/3^{\,on}$ the number line.

Shade in 1/3 of this bar:

Shade in ³/₄ of this bar:

Shade in $\frac{3}{8}$ of this bar:

There were 6 oranges in a bowl. Two of the were eaten leaving 4 left. What fraction was eaten?

Say what fraction was eaten with the number 1 being the numerator.

10 people were in the swimming pool. 4 got out and left 6 swimming.

What fraction of the 10 people stayed in to swim?

Express the fraction, using your knowledge of equivalence, so that the numerator is as small as it can be.

Spring 1: Week 2: Working at greater depth

Fractions: Recognise and show, using diagrams, families of common equivalent fractions

Activities for pupils working at greater depth:

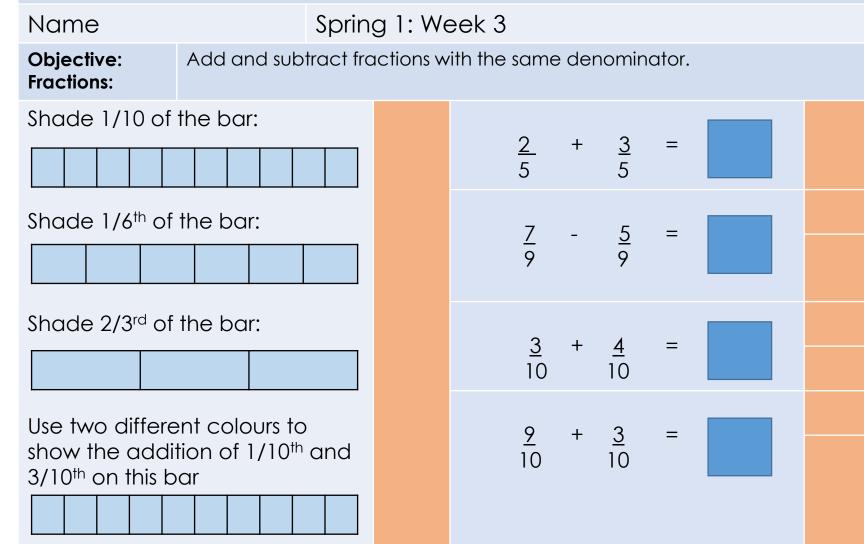
Teaching Sequence

>	Know all equivalent fractions of 1/2 up to	Patterns	Odd one o	out			
>	and including the denominator 12 Know all equivalent fractions of 1/4 up to	$1/12^{th} + 11/12^{th} = 1$ $2/12^{th} + 10/12^{th} = 1$ $3/12^{th} + 9/12^{th} = 1$	Which is the odd one out in each of these lines?				
	and including the denominator 12	Continue this pattern.	3/4	9/12	4/6		
>	Know all equivalent fractions of ¾ up to	Continue these other patterns whose first line is given to you:	9/12	10/15	2/3		
	and including the denominator 12	$1/9^{th} + 8/9^{th} = 1$	1/2	10/20	11/12		
>	Know all equivalent fractions of 1/3 up to	$1/7^{\text{th}} + 6/7^{\text{th}} = 1$	2/6	3/8	1/3		
	and including the denominator 12	$1/11^{\text{th}} + 10/11^{\text{th}} = 1$	Why?				
>	Know all equivalent fractions of 2/3 up to and including the denominator 12	This picture represents 1/5 th of a shape. Draw the whole shape. Do so in two different ways.	•	this addition to the square bo	iangle by putting oxes.		
>	Know all equivalent fractions of 1/8 up to and including the denominator 24			3⁄4	3⁄8		
	Know all equivalent fractions of 1/5 up to and including the denominator 20	Now create 1/3 rd of a shape for your friend to complete.					
				5/8			

Spring 1: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils books so that they can keep their own checks.

Fractions: Recognise and show, using diagrams, families of common equivalent fractions	Ме	My Teacher
Do you know all the equivalent fractions of 1/5 up to and including the denominator 20?		
Do you know all the equivalent fractions of ½ up to and including the denominator 24?		
Do you know all the equivalent fractions of $\frac{2}{3}$ up to and including the denominator 12?		
Do you know all the equivalent fractions of 1/3 up to and including the denominator 12?		
Do you know all the equivalent fractions of ³ / ₄ up to and including the denominator 12?		
Do you know all the equivalent fractions of 1/4 up to and including the denominator 12?		
Do you know all the equivalent fractions of $\frac{1}{2}$ up to and including the denominator 12?		


Year 4: Spring 1

Week 3: Fractions

Add and subtract fractions with the same denominator.

Spring 1: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Spring 1: Week 3: Practice and Consolidation

Fractions: Add and subtract fractions with the same denominator.

eaching equence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:
Add two fractions with the same denominator that add up to more than one whole. Subtract one fraction from another with the same denominator crossing one whole.	 Remind pupils of the terms numerator and denominator. Express denominator as 'part of' and remind them that one tenth is one part of 10 equal pieces Put a set of cards, with fractional values but with same denominator in order. Make up one whole by adding two fractional vales together with the same denominator, eg, 4/5 + 1/5 Using fractions with the same denominator get pupils to add two fractional values that come to more than 1 whole. 	What fractional value is shaded? Add these 2 fractions together: $\frac{3}{7} + \frac{4}{7} = 5 + 7 = 3 + 7 = 1 + 1 + 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$

Spring 1: Week 3: Mastering this Objective – Deeper Understanding

Fractions: Add and subtract fractions with the same denominator.

	aching quence	If pupils have mastered this objective the activities independently:	ney will be	able to c	omplete	these
 Add two fractions with the same denominator that add up to more than one whole. Subtract one fraction from another with the same 		Adding fractions with the same denominator When adding two fractional amounts with the same denominator together the answer is 1%. Give two different examples of what the fractions could have been? If the answer was 2% what could the two	Here is the You have t denominat When you the answer Give two e fractions c	n the other		
	denominator crossing one whole.	fractions have been? Make up another similar problem to give to your friends.	If the answ examples of been.		-	ner two could have
		Finding answers to equivalent fractions	Complete the table			
		Find 4/6 of 24 and then find 2/3 of 24.	1/10th	1/20th	1/50th	Make 1 whole
		What do you notice?	1/10	2/20	5/50	9/10
		Now find 2/10 of 50 and then find 1/5 of 50	3/10			
			6/10			
		Can you explain what you've found?	7/10			
		Write any other similar statements.	9/10			

Spring 1: Week 3: Working at greater depth

Fractions: Add and subtract fractions with the same denominator.

Teaching Sequence		Activities for pupils working at greater depth:					
A	Add two fractions with the same denominator that add up to more than one whole. Subtract one fraction from another with the same denominator	race for charity. The course was 20 As part of their train race which was 2/5 and Maria ran in a the charity course.	hing Jayne ran another 5 th of the charity course race which was 4/5 th of	Pocket Money Dina and Harry both have the same amount of pocket money. Dina spends 3/5 th of hers on musical items and Harry spends 1/5 th of his pocket money on sweets. They have £12 left between them. Work out how much pocket money each had to start with and how much did each spend on musical items and sweets respectively.			
	crossing one whole.	manufacturer used	to make purple the paint 1 ³ ⁄ ₄ as much red as blue, e showing how much red blue: When making pancakes the baker uses half as much egg mixture as milk. Create another table to show how much egg mixture is used against 1 to 6 litres of milk.	 Building a house A builder mixes cement by putting in 2/7th cement to 5/7th sand. He mixes 70 litres of the mixture before adding water. Cement costs £5 a litre and sand costs £2 a litre. How much does the 70 litres mixture cost? If the builder needs 210 litres of the mixture to build a house, how much would that cost? 			

Spring 1: Week 3: Assessment

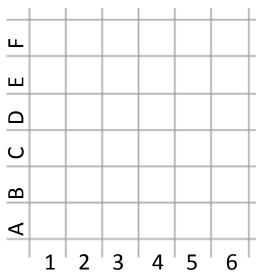
The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Fractions: Add and subtract fractions with the same denominator.	Me	My Teacher
Can you answer additions and subtractions of fractional values of the same denominator when presented as word problems?		
Can you add two fractional values of the same denominator where the answer is greater than 1?		
Can you subtract two fractions with the same denominator?		
Can you add two fractions of the same denominator where the answer is less than 1?		
Can you work out what to add to a given fraction of the same denominator to make up 1?		
Do you appreciate that 1/10 th is one part of ten and 1/8 th is one part of eight, etc.?		

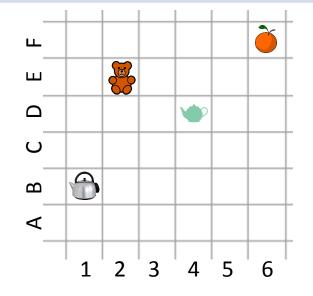
Year 4: Spring 1

Week 4: Geometry: Position and Direction

Describe positions on a 2D grid as coordinates in the first quadrant.


Spring 1: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.


Name

Spring 1: Week 4

Objective: Geometry **Position & Direction:** Describe positions on a 2D grid as coordinates in the first quadrant

Put a dot on 2B Put another dot on 4F Now join them together Change colour pen and put two dots on 3C and 5E and join them.

Describe the position of:

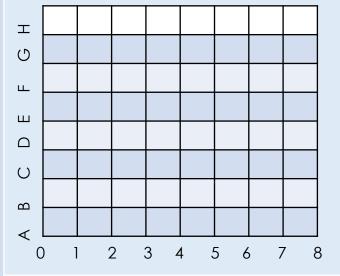
- The teddy
- The teapot
- The kettle
- The orange

Spring 1: Week 4: Practice and Consolidation

Geometry: Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil Examp	and Pa ples:	iper Ac	ctivities			
 Read coordinates using both axes Plot points using both axes Answer questions involving coordinates Create shapes by plotting points in first quadrant 	 Start by looking at a chess or draughts board and talk about the positions of each square. Give names to movements made, eg, up 2 and across left 2, etc. Look at common children's games such as battleships and others which require pupils to know about co- ordinates. Let pupils accustom themselves with these games before moving on to look more formally at 2D grids in the first quarter. 	54321Take sobelow:			C per and	Place of make of Place of note of Place of note of	a triangle a note o a square oordinat a T shap oordinat	e on the grid and

Spring 1: Week 4: Mastering this Objective – Deeper Understanding

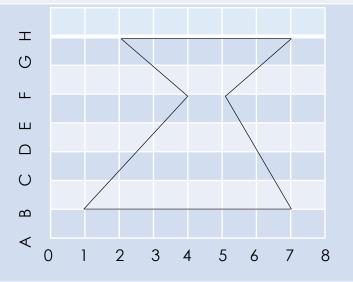

Geometry: Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant

Teaching Sequence

 Read coordinates using both axes

- Plot points using both axes
- Answer questions involving coordinates
- Create shapes by plotting points in first quadrant

If pupils have mastered this objective they will be able to complete these activities independently:


Look at the grid above;

Place a dot on 3B and then make a line to 7D.

Change colour and make a line that joins 5B to 8H

Change colour again and make a line that joins 1B to 4F.

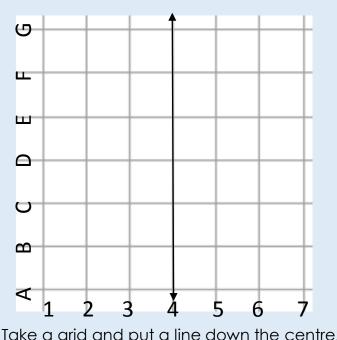
Use a similar grid to create your own shape and record carefully the points you are moving from and moving to.

Starting with 1B record all the points that have been joined to make this shape.

Secretly, create your own shape and give the points you have plotted to a friend to see if they come up with the same shape as you have.

Check the outcomes very carefully.

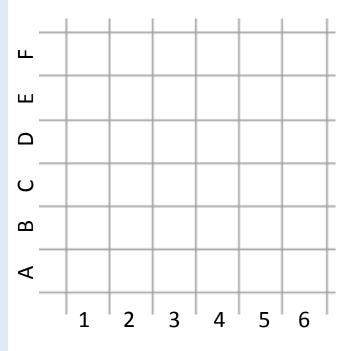
Spring 1: Week 4: Working at greater depth


Geometry: Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant

Activities for pupils working at greater depth:

Teaching Sequence

Read coordinates using both axes


- Plot points using both axes
- Answer questions involving coordinates
- Create shapes by plotting points in first quadrant

Take a grid and put a line down the centre. Create a shape on the left hand side and note the coordinates.

Now create the same shape that is symmetrical on the right hand side and note the coordinates.

Create additional shapes for your friend to complete.

Take a grid and mark as shown above. Create a game that has movement around the grid.

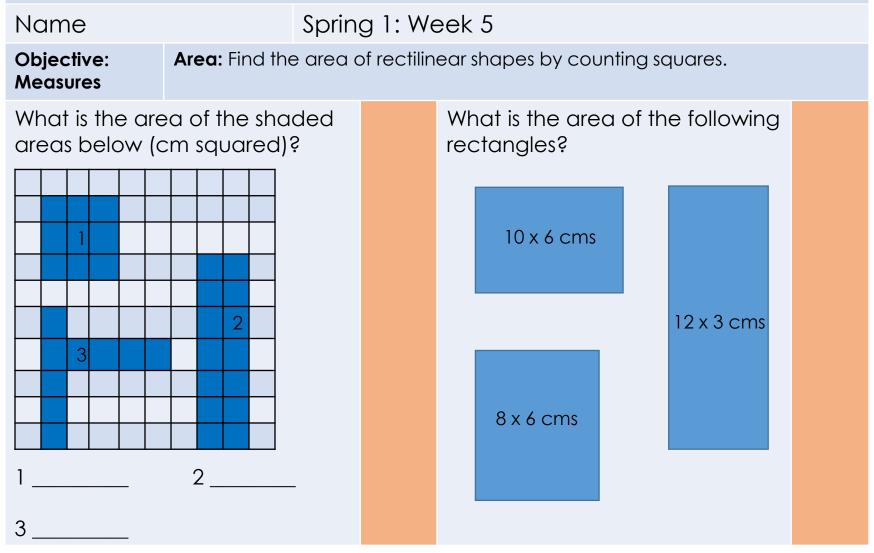
The movement is organised by naming the coordinates.

Your aim is to create the most interesting game.

Spring 1: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry: Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant	Ме	My Teacher
Can you invent a game using coordinates on a point or a square and make movements accordingly?		
Can you use symmetry to help plot a shape on a grid?		
Can you plot a shape on a grid and provide the coordinates?		
Can you identify a given point on a grid according to the coordinates given?		
Can you identify a given square on a grid according to the coordinates given?		


Year 4: Spring 1

Week 5: Measures: Area

Find the area of rectilinear shapes by counting squares.

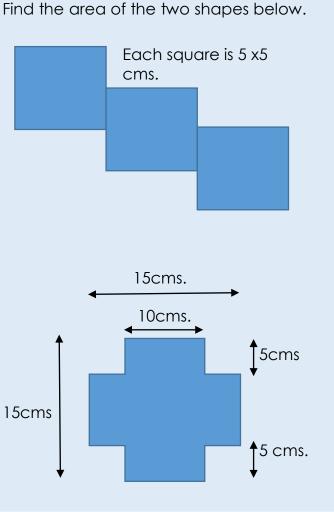
Spring 1: Week 5: Pre-Learning Task

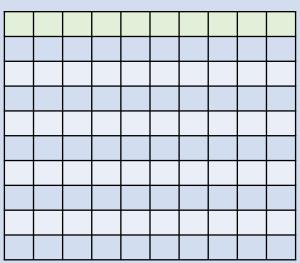
The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Spring 1: Week 5: Practice and Consolidation

Measures: Area: Find the area of rectilinear shapes by counting squares.

aching quence	Oral and Mental Activities: Examples:	Pencil and Paper Examples:	Activities	
Count squares to identify the area of a shape. Draw shapes of a given size, e.g. 20 squares. Introduce the term square centimetre/cm ² Use the formula for calculating the area of a rectilinear shape (I x b)	 Use squared paper with pupils to explain that the area is measured in squares. Introduce the term cm² and explain it in relation to the squares on the paper. Let pupils draw different shapes on squared paper and 	shape using only full squares. When complete count the number of squares covered and record the area of the terms of cm squared or cm ² Using the formula 'length x breadth' work out the area of the following shapes: 10 x 4 cms 6 x 4 cms 15 x 6 cms.		omplete count the number of covered and record the area in cm squared or cm ² dth' work out the area of the 15 x 2 cms.
	 record the area using cm² Introduce the formula for calculating the area of a rectangle as 'length x breadth'. 	If the area of a rectangle is 30 cm ² , give 2 examples of the dimensions of the rectangle. If the area of a rectangle is 45 cm ² , give 2 examples of the dimensions of the rectangle. If the area of a rectangle is 100 cm ² , give 2 examples of the dimensions of the rectangle.		


Spring 1: Week 5: Mastering this Objective – Deeper Understanding


Measures: Area: Find the area of rectilinear shapes by counting squares.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

- Count squares to identify the area of a shape.
 Draw shapes of a given size, e.g. 20 squares.
 Introduce the term square
- centimetre/cm²
 Use the formula for calculating the area of a rectilinear shape (I x b)

Cut out a piece of 10 x 10 squared paper. Make up as many different shapes as you can which have the same area.

- Start with an area of 10 cms.² (one is done for you)
- Then with an area of 6cms²
- Then with an area of 8cms²

What is the area of a field 25Km by 10Km? What is the area of a netball court 30Km by 20Km?

What is the area of a playground 20Km by 10Km?

Spring 1: Week 5: Working at greater depth

Measures: Area: Find the area of rectilinear shapes by counting squares.

Teaching

Activities for pupils working at greater depth:

Sequence

- Count squares to identify the area of a shape.
- Draw shapes of a given size, e.g. 20 squares.
- Introduce the term square centimetre/cm²
- Use the formula for calculating the area of a rectilinear shape (I x b)

Take a rectangle that has whole centimetres for its length and breadth. Measure the rectangle and say what its perimeter is and then say what its area is.

Fill in the table below:

Dimensions	Perimeter	Area
10 x 5 cm		
6 x 3 cm		
15 x 5 cm		
20 x 5 cm		
20 x 10 cm		

Below is a diagram of a garden area which includes a pond.

All but the pond is grassed and the area of the pond is 12cm².

If the perimeter of the garden is 90 metres. What could the area of grassed area be?

The width of a rectangle is 3 metres less than the length.

The area is between 50 and 80 metres. What could the dimensions of the rectangle be?

Provide three different alternatives.

Is it true that if you double the area of a rectangle you also double the perimeter? Prove this one way or the other.

A swimming pool has a walkway around its perimeter.

The walkway is exactly 2m wide all around. The pool has an area of 250metres². What could the area of the walkway be?

Spring 1: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Measures: Area: Find the area of rectilinear shapes by counting squares.	Me	My Teacher
Can you begin to work out the area of regular shapes that are set alongside each other?	1	
Do you appreciate the relationship between area and perimeter?		
Do you know the formula for measuring the area of a square and the area of a rectangle?		
Do you know that the symbol to show a squared centimetre or metre is ² ?		
Do you know that area is measured in squared centimetres or metres?		

Year 4: Spring 1

Week 6: Multiplication & Division

Divide 2-digit and 3-digit numbers by a 1-digit number using formal written layout with no remainder.

Spring 1: Week 6: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Spring 1: Week 6								
Objective: Multiplication & Division		Divide 2-digit and 3-digit numbers by a 1-digit number using formal written layout with no remainder.							
	Use tl	he forma	l methc	od to calculate these:					
65 ÷ 5	5			147 ÷ 7					
81 ÷ 9)			272 ÷ 8					
110 ÷ 1	1			207 ÷ 9					
96 ÷ 8				246 ÷ 6					

Spring 1: Week 6: Practice and Consolidation

Multiplication & Division: Divide 2-digit and 3-digit numbers by a 1-digit number using formal written layout with no remainder.

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:
 Divide a multiple of 10 by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 2-digit number by a single digit 	 Remind pupils about dividing a 10s number by 10 and show what happens when you divide a 100s number by 100. Create a quick fire answer system to dividing by 10. 	Divide the following numbers by 10: 60 120 150 80 250 110 480 230 450 Divide the following numbers by 100: 1200 200 4700 700 400 100 1200 3600 700
 number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 3-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x 	 Show a card with a single or two-digit number on and get pupils to divide numbers by 10 and to respond as quickly as possible. Set out, using the 	Ensure that the following are completed using the columnar $27 \div 9$ $105 \div 7$ $96 \div 6$ $189 \div 9$ $217 \div 7$ $369 \div 9$ $232 \div 8$ $434 \div 7$ $150 \div 10$ $121 \div 11$ $252 \div 12$ $341 \div 11$
with no remainder.	 columnar system, a division of a 2-digit number by x2; x3; x4; x5; x6; x7; x8; or x9 no remainder Move on to demonstrate the division of a 3-digit number by a single digit (no remainder). 	Card Game Make up 25 cards with 2 and 3-digit numbers on them. Show your friend one at a time and see how quickly s/he can divide by 10 or divide by 100. Time him or her for one minute and see how many they get right. Then swap places.

Spring 1: Week 6: Mastering this Objective – Deeper Understanding

Multiplication & Division: Divide 2-digit and 3-digit numbers by a 1-digit number using formal written layout with no remainder.

Teaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:		
 Divide a multiple of 10 by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 2-digit number by a single digit number using 2, 	Complete these by using the columnar method of multiplication: $7\sqrt{560}$ ÷ $8\sqrt{768}$ ÷ $9\sqrt{891}$ ÷ $6\sqrt{486}$ ÷ $7\sqrt{287}$ ÷ $9\sqrt{504}$ ÷	Find the missing digit: 6 0 \div 9 = 70 4 8 \div 8 = 56 3 1 \div 7 = 43 5 0 \div 8 = 65	
 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 3-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. 	6\\ 486÷ 7\\ 287÷ 9\\ 504÷ How close can you get?	Put the cards into the correct place in the table. 108÷6 175÷7 405÷9 104÷8 255÷5 427÷7 Less than 10 Between 10 More than 20 1 0 20	

Spring 1: Week 6: Working at greater depth

Multiplication & Division: Divide 2-digit and 3-digit numbers by a 1-digit number using formal written layout with no remainder.

Teaching Sequence	Activities for pupils working at greater depth:			
 Divide a multiple of 10 by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 2-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder. Divide a 3-digit 	 Electric Bill The electric bill for a house was £73 per month. However, after putting in energy saving bulbs the bill was reduced to £696 per month. Work out how much the electricity bill was originally. Find out how much money they saved on the electric after switching to energy saving bulbs.	Sum and the Product The sum of two numbers is 38 and their product is 217. What are the two numbers? The sum of two numbers is 32 and their product is 192. What are the two numbers?		
Divide a 3-digit number by a single digit number using 2, 3, 4, 5, 6, 7, 8, 9x with no remainder.	Shopkins Aleem has 7 times more shopkins than Jo. Together they have 104. How many shopkins does each one have? Explain how you reasoned this out. Now try this one: Harry has 9 times more marbles than Jill. Together they have 110 marbles. How many has each got?	Monthly payments Mrs. Johns pays £900 a year for her car. She pays this monthly, paying the same amount each month. At the end of the year she was told that she had paid £120 too much. How much did pay per month in the first place? How much did she need to pay each month?		

Spring 1: Week 6: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Divide 2-digit and 3-digit numbers by a 1- digit number using formal written layout with no remainder.	Me	My Teacher
Can you divide a 3-digit number by x10; x11 and x12 using formal layout?	4	
Can you divide a 3-digit number by all single digit numbers using formal layout?		
Can you divide a 2-digit number by x10; x11 and x12 using formal layout?		
Can you divide a 2-digit number by all single digit numbers using formal layout?		
Can you divide a multiple of 100 by all single digit numbers (no remainder)?		
Can you divide a hundreds number by 100?		
Can you divide a tens number by 10?		

YEAR 4 : SPRING 2: Overview and Teaching Steps					
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6
5 Multiplication & Division	4 Place Value	3 Addition & Subtraction	3 Geometry 2D Shape	6 Multiplication & Division - Decimals	Consolidate and Assess
Use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1; multiplying three numbers together.	Find 1000 more or less than a given number.	Consolidate Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.	-Identify lines of symmetry in 2D shapes presented in different orientations. - Complete a simple symmetric figure with respect to a specific line of symmetry	Find the effect of multiplying a number with up to 2 decimal places by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.	Start this week by revising the learning covered in the Autumn and Spring terms so as to ensure pupils are fluent and secure with their basic
 Use all table facts up to 12x12 in calculations involving multiplication and division. Know what happens when multiplying by 0 or 1. Know what happens when dividing by 1. Know what happens when three numbers are multiplied together. 	 Find 100 more than any 3 digit number Find 100 less than any 3 digit number Find 100 more than any 4 digit number Find 100 less than any 4 digit number Find 1000 more than any 4 digit number Find 1000 less than any 4 digit number Find 1000 more than any 2 digit number Find 1000 more than any 3 digit number 	 Add numbers with 4-digits without exchanging Add numbers with 4-digits where the total of hundreds, tens or ones exceed 10 Subtract a number from a 4-digit number which requires no exchanging Subtract a number from a 4-digit number where exchanging is required 	 Define and show understanding of symmetry Show lines of symmetry in an equilateral or isosceles triangle (in different orientations) Show lines of symmetry in a quadrilateral (in different orientations) Show lines of symmetry in circle Create simple symmetrical figures and show lines of symmetry Recognise lines of symmetry in given shapes 	 Multiply any number with up to 2 decimal places by 10 and express the answer using tenths. Multiply any number with up to 2 decimal places by 100 and express the answer using tenths and hundredths. 	skills. Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in the Autumn and Spring terms. Analyse the results and use information to help focus the intervention or pre-teaching sessions, as needed, for the following term.

Year 4: Spring 2

Week 1: Multiplication & Division

Use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1; multiplying three numbers together.

Spring 2: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Spring 2: We		g 2: We	eek 1		
Objective: Multiplication & Division	•	Use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1; multiplying three numbers together.				
Calcul	late these	e rapidly:		Calculate these carefully:		
8 x 9				5 x 0		
42 ÷ 6				11 ÷ 1		
11 x 5				4 x 3 x 2		
64 ÷ 8				8 x 0		
9 x 4				17 ÷ 1		
88 ÷ 8				5 x 7 x 4		
12 x 6				12 x 9		
63 ÷ 7				2 x 5 x 3		

Spring 2: Week 1: Practice and Consolidation

Multiplication & Division: Use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1; multiplying three numbers together.

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Paper A Examples:	ctivities	
 Use all table facts up to 12x12 in calculations involving multiplication 	all their times tables to x12.	Use cards which show Include x0. Pupils show one minute, to respon they should check how	Id be given a certain Id to as many cards c	n amount of time, say as they can and then
 and division. Know what happens when multiplying by 0 or 1. Know what happens when 	They should practise regularly and be able to respond instantaneously to questions related to times tables; they should do so when asked out of order	$24 \div 8 = 3$ 70	$5 \div 4 = 5$ $63 \div 3$	$7 = 9$ $72 \div 8 = 8$ $8 = 11$ $29 \div 3 = 9$
 dividing by 1. Know what happens when three numbers are multiplied together. 	 and they should know inverse questions also. Explain what happens when something is multiplied by x0 and by x1. Use rapid recall cards to help pupils improve speed. 	4 x 8 6	s in the correct box: x 1 x 5 10 ÷ 2 x 7 x 2 88 ÷ 8)x 7 99 ÷ 11 Answer is between 10 and 20	72 ÷ 3 28 ÷ 7 90 ÷ 5 Answer is more than 20

Spring 2: Week 1: Mastering this Objective – Deeper Understanding

Multiplication & Division: Use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1; multiplying three numbers together.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

- Use all table facts up to 12x12 in calculations involving multiplication and division.
- Know what happens when multiplying by 0 or 1.
- Know what happens when dividing by 1.
- Know what happens when three numbers are multiplied together.

Total	Number of groups	Amount in each group
72		9
64	8	
42		6
33	11	
54		9

Calculating in different ways

Method 1	Method 2	Method 3
9 x 6 =	9 x 6 =	9 x 6 =
=9 x 5 + 9	X	9 x 7 – 9
= 54	= 54	=54

Now show the three methods when multiplying: 8×6 ; 5×6 ; 8×3

Complete the following tables:

Rule ÷ 6	
36	
66	
54	
48	
42	

Rule x 8	
7	
11	
4	
9	
8	

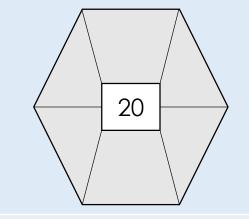
Now make some of your own with different rules

Josh needs 3 oranges to make a drink. How many does he need to make 12 drinks?

Helen needs 4 lemons to make 3 drinks. How many does she need to make 15 drinks?

Spring 2: Week 1: Working at greater depth

Multiplication & Division: Use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1; multiplying three numbers together.

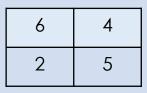

Teaching Sequence

Activities for pupils working at greater depth:

 Use all table facts up to 12x12 in calculations involving multiplication and division.

- Know what happens when multiplying by 0 or 1.
- Know what happens when dividing by 1.
- Know what happens when three numbers are multiplied together.

Look at the hexagon below. The target number is in the square in the middle. Make up six multiplication and/ or division facts that will be equal to the target number. Then change the target number.



Strawberries arrive in the supermarket in large crates.

Each crate contains 20 strawberries. If the supermarket takes delivery of 900 strawberries, how many crates were there?

John has six times as many Star Wars figures than Michael. Altogether they have 49 figures. How many does each have?

Look at the matrix below

Use the numbers to create 4 multiplications: 6×4 ; 2×5 ; 6×2 ; 4×5 Now add the answers together:

(24 + 10 + 12 + 20) = 66

Place any four numbers into the 2 x 2 matrix so when added together as shown above the answer is as close to 100 as you can make it.

Now try one where the answer is as close to 120.

Using the digits 2, 4 and 5, what is the largest number you can make? What is the smallest?

Now try the digits 6, 7 and 8.

Spring 2: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1; multiplying three numbers together.	Me	My Teacher			
Do you what happens when 3 numbers are multiplied together?					
Do you know what happens when you divide by 1?					
Do you know what happens when you multiply by x0?					
Do you know what happens when you multiply by x1?					
Can you use all multiplication facts up to 12 x 12 to calculate division problems?					
Can you use all multiplication facts up to 12 x 12 to calculate multiplication problems?					

Year 4: Spring 2

Week 2:

Find 1000 more or less than a given number.

Spring 2: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Spring 2: Week 2				
Objective: Place Value	Find	d 1000 more or less than a given number.				
What i	s 100) more than:		What is 100 less than:		
267				328		
128				612		
1195				904		
What is 1000 more than:		What is 1000 less than:				
2591				5296		
3456				6149		
6712				2019		
981				3194		

Spring 2: Week 2: Practice and Consolidation

Place Value: Find 1000 more or less than a given number.

	aching quence	Oral and Mental Activity Examples:		ncil and Paper amples:	Activities	
≻	Find 100 more than any 3 digit	 Help pupils to have 	Со	mplete the table	below:	
	number	rapid recall when adding or subtracting		100 less than		100 more than
	Find 100 less than any 3 digit	100 to a given 3-digit			379	
	number	number.			150	
	Find 100 more than any 4 digit	Then move on to add or subtract 100 from a			274	
	number Find 100 less than	4-digit number.			891	
	any 4 digit	Create a system of rapid recall and			220	
	number Find 1000 more	chanting to help pupils with their mental				
	than any 4 digit	agility.	No	w complete the fo	ollowing table:	
≻	number Find 1000 less	Move on then to add		1000 less than		1000 more than
	than any 4 digit number	or subtract 1000 rapidly from a 4-digit number.			2359	
≻	Find 1000 more	Ensure pupils are			4190	
	than any 2 digit number	confident with adding and subtracting from a			6274	
≻	Find 1000 more	4-digit number before			8191	
	than any 3 digit number	adding 1000 to 2 and 3 digit numbers.			2720	
				nat is 1000 more ar		

What is 1000 more and 1000 less than 7895? What is 1000 more than 67; 541; 98; and 398?

Spring 2: Week 2: Mastering this Objective - Deeper Understanding

Place Value: Find 1000 more or less than a given number.

	eaching equence	If pupils have mastered this objective the activities independently:	ney will be able to complete these
A A A	Find 100 more than any 3 digit number Find 100 less than any 3 digit number Find 100 more than any 4 digit	Add 1000 to these numbers and then take away 1000 from each of the numbers. You will have 12 numbers in total (the original; +1000 and -1000). Put them in order with the smallest first. 2854; 3290; 6927; 4826	Look at the numbers below. Find 10 more; 100 more and 1000 more than each number. Then find 10 less; 100 less and 1000 less than each number. 3289
A	number Find 100 less than any 4 digit number Find 1000 more	What comes next in this series? 6706+ 1000= 7706 7706 + 1000 = 8706 8706 + 1000 = 9706	4579 6240 5127 8420
A A A	 than any 4 digit number Find 1000 more than any 2 digit number 	Using the four digits below, make as many numbers as you can.	Continue the sequences below: 249834984498 762166215621 82357235713561356035
		5035, 5053, 5350, 5530, 5503 If you wrote these numbers in order, starting with the largest, which number would be third? Explain how you ordered the numbers.	

Spring 2: Week 2: Working at greater depth

Place Value: Find 1000 more or less than a given number.

	leaching Sequence	Activities for pupils working at greater o	lepth:
	 Find 100 more than any 3 digit number Find 100 less than any 3 digit number Find 100 more than any 4 digit number Find 100 less than any 4 digit number Find 1000 more than any 4 digit 	Create four-digit numbers where the digit sum is six and the tens digit is one. e.g. 2211, 4110, 3210 What is the largest/smallest number you can make? Add 1000 to the smallest and the largest number. Now create a 4-digit number where the digit sum is 8 and the tens digit is 2. What are the smallest and largest numbers you can make?	 8 3 7 4 8 6 Using the number cards above, make up two 4-digit numbers that are more than 1000 apart. Now, make up two 4-digit numbers that are less than 1000 apart. Challenge yourself to find as many pairs that are more than 1000 and as many pairs that are less than 1000 apart.
)	 number Find 1000 less than any 4 digit number Find 1000 more than any 2 digit number Find 1000 more than any 3 digit number 	Create sets of 5 cards: You need sets where you have an original number (4 digits); a number that is 1000 greater; a number that is 1000 smaller; a number that is 100 greater and a number that is 100 smaller than the original number. You should have 12 sets of 5 cards (60 in total) The idea of the game is to play snap by collecting as many pairs as you can. You have to explain the relationship between the pair before you win it.	5 children were given a maths problem where the answer was 4870. Harry wrote 3858 as his answer; Harry wrote 4735; Jen wrote 6187; Ahmed wrote 5925 and Harriet wrote 4648. Who was closest to the answer and who was furthest away?

Spring 2: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value: Find 1000 more or less than a given number.	Me	My Teacher
Can you find a number that is 1000 more than a given 3- digit number?	1	
Can you find a number that is 1000 less than a given 4- digit number?		
Can you find a number that is 1000 more than a given 4- digit number?		
Can you find a number that is 100 less than a given 3- digit number?		
Can you find a number that is 100 more than a given 3-digit number?		

Year 4: Spring 2

Week 3: Addition & Subtraction

Consolidate

Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.

Spring 2: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Spring	Spring 2: Week 3				
Objective: Addition & Subtraction	Consolidate : Add an written methods of co		-			
357 <u>122+</u>	671 <u>114+</u>		675 <u>241-</u>	986 <u>444-</u>		
236 <u>246+</u>	429 <u>176+</u>		612 <u>409-</u>	531 <u>327-</u>		

Spring 2: Week 3: Practice and Consolidation

Addition & Subtraction: Consolidate: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Examples:	Paper Acti	vities		
 Add numbers with 4-digits without exchanging Add numbers 	 Pupils should be reminded of the learning they have already done in 	What is the v 3 4 87		oold digit in the fc 35 9 2 25 1 9	bllowing num 2 651	nbers: 31 6 7
 Add hombers with 4-digits where the total of hundreds, tens or ones exceed 10 Subtract a number from a 	 relation to addition and subtraction. Give a great deal of attention to the methodology of columnar addition and subtraction. 		git numbers o +300+ 40+5)	as below:		
 4-digit number which requires no exchanging > Subtract a 	 Ensure pupils know the value of each of the digits in a 4-digit number. 	2346 <u>1231+</u>	2515 <u>3321+</u>	2598 <u>1201+</u>	3167 <u>1212+</u>	
 August a submatch a number from a 4-digit number where 	Take care to explain the exchanging for both addition and	2376 <u>1625</u> +	3416 <u>2156</u> +	1527 <u>2317</u> +	3169 <u>1236</u> +	
exchanging is required	 subtraction. Recognise as quickly as possible those who are struggling with 	3813 <u>1501</u> -	2517 <u>1306</u> -	2614 <u>1212</u> -	1457 <u>931-</u>	
	this crucial element of their mathematics.	2415 <u>1347</u> -	3162 <u>1234</u> -	4812 <u>2201</u> -	3213 <u>1104</u> -	

Spring 2: Week 3: Mastering this Objective – Deeper Understanding

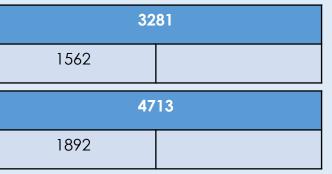
Addition & Subtraction: Consolidate: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.

Teaching If pupils have mastered this objective they will be able to complete these Sequence activities independently: Add numbers Look at the bar model below. Use formal Find the missing numbers by using formal with 4-digits methods to check out the additions and methods of addition and subtraction: without subtractions: exchanging 1382 += 5245Add numbers \geq 3527 with 4-digits 2324 += 6278where the total 1381 2146 of hundreds, tens 6718 -= 1425or ones exceed 10 1381 + 2146 = 3527Use formal Subtract a 2146 + 1381 = 3527 6128 -= 2178methods to number from a 3527 - 1381 = 2146check these. 4-digit number 3527 - 2146 = 1381which requires Use formal methods to solve the problem: Which of these number sentences have the no exchanging Subtract a \geq answer that is between 550 and 600? number from a David went to a football match and 4-digit number estimated that there were 4367 supporters 1174 - 611 where in the ground. exchanging is When the official announcement was 3330 - 2779required made there were 5912 supporters. What was the difference between David's 9326 - 8777 estimate and the actual total? When full, the ground holds 6712. How Now, write similar problems for your friends many empty seats were there? to solve.

Spring 2: Week 3: Working at greater depth

Addition & Subtraction: Consolidate: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.

Teaching Sequence


Add numbers with 4-digits without exchanging

 Add numbers with 4-digits where the total of hundreds, tens or ones exceed 10

- Subtract a number from a 4-digit number which requires no exchanging
- Subtract a number from a 4-digit number where exchanging is required

Activities for pupils working at greater depth:

Identify the missing numbers in these bar models and then show your workings using formal methods of addition and subtraction.

Now create your own bar models for your friends to solve.

Throw 2 dice twice. Arrange the 4 numbers that you get so that it is as close to 3000 as possible (either above or below).

Work out, using formal methods, how close you are to 3000.

Look at the matrix below:

6	1	5	3
4	2	7	5
5	1	3	5
4	0	2	1

Eight 4-digit numbers can be made by looking at each row and then each column, eg, 6153; 4275; 5135; 4021; 6454; 1210; 5732; 3551.

Which two numbers added together is closest to 9000?

Fill in the empty boxes to make this calculation correct.

Spring 2: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Addition & Subtraction: Consolidate: Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.	Ме	My Teacher		
Can you subtract a 4-digit number from another using columnar subtraction which requires exchange between the units, tens, hundreds or thousands (or any two of these)?				
Can you subtract a 4-digit number from another using columnar subtraction which requires no exchange between the units, tens, hundreds or thousands?				
Can you add 3 numbers with 4-digits using columnar addition where the units, tens or hundreds make more than 10?				
Can you add 2 numbers with 4-digits together using columnar addition, where the units, tens or hundreds when added make more than 10?				
Can you add 2 numbers with 4-digits together using columnar addition without exchange between units and tens?				
Can you partition a 4-digit number so that each digit's true value is seen?				
Do you know the value of each digit in a 4-digit number?				

Year 4: Spring 2

Week 4: Geometry: 2D Shapes

-Identify lines of symmetry in 2D shapes presented in different orientations.

- Complete a simple symmetric figure with respect to a specific line of symmetry

Spring 2: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Sp	Spring 2: Week 4			
Objective: Geometry	 2D Shape: -Identify lines of symmetry in 2D shapes presented in different orientations. - Complete a simple symmetric figure with respect to a specific line of symmetry 				
	s of symmetry in th shown below:	ie shapes	·	igures by looking at th he line of symmetry	ne line

Spring 2: Week 4: Practice and Consolidation

Geometry: 2D Shape: -Identify lines of symmetry in 2D shapes presented in different orientations. - Complete a simple symmetric figure with respect to a specific line of symmetry

	aching quence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:
	Define and show understanding of symmetry Show lines of	• Focus on the term 'symmetry' and talk about its origin.	Use folded paper to create symmetrical effect. Do so by folding once and then by folding twice. Now use paint to create a more creative example.
>	symmetry in an equilateral or isosceles triangle (in different orientations) Show lines of symmetry in a quadrilateral (in different orientations)	 Let pupils fold paper and then hold the folded line and cut at the 'open' end and then open to see their symmetrical shape. Do a similar activity using paints to create a 	Mark clearly all the lines of symmetry associated with these shapes (if they have any):
	Show lines of symmetry in	symmetrical effect. • Show some of the	Given half a shape – complete the other side.
A A	circle Create simple symmetrical figures and show lines of symmetry Recognise lines of symmetry in given shapes	regular shapes we know and get pupils to look at where their lines of symmetry are.	The example here is of the letter 'A'. Fold a paper in half and draw on one side of the paper and get your partner to reflect the shape on the other side creating a symmetrical shape. Then, swap over.

Spring 2: Week 4: Mastering this Objective – Deeper Understanding

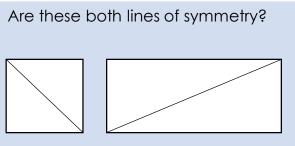
Geometry: 2D Shape: -Identify lines of symmetry in 2D shapes presented in different orientations. - Complete a simple symmetric figure with respect to a specific line of symmetry


Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

Define and show understanding of symmetry

- Show lines of symmetry in an equilateral or isosceles triangle (in different orientations)
- Show lines of symmetry in a quadrilateral (in different orientations)
- Show lines of symmetry in circle
- Create simple symmetrical figures and show lines of symmetry
- Recognise lines of symmetry in given shapes


Symmetry in Nature Find as many examples of symmetrical patterns in nature that you can see or can find out about.

Draw a 2D shape that has no more than one line of symmetry.

Draw a 2D shape that has 2 lines of symmetry.

Draw a 2D shape that has more than 2 lines of symmetry.

If not, why not?

Explain your reasoning.

Human Face

Many human faces are almost perfectly symmetrical. Take a photograph of yourself, print it out and fold in half.

Glue the half in to your maths book and draw as accurately as you can the other half.

Spring 2: Week 4: Working at greater depth

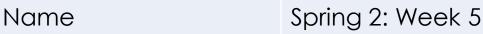
Geometry: 2D Shape: -Identify lines of symmetry in 2D shapes presented in different orientations. - Complete a simple symmetric figure with respect to a specific line of symmetry

Teaching Sequence		Activities for pupils	s working at greater o	depth:	
A A	Define and show understanding of symmetry Show lines of symmetry in an equilateral or	A	В	Create a shape in Segment A. Start with a line which starts from the top of the vertical line in segment A and ends at the horizontal line between A and C.	
>	isosceles triangle (in different orientations) Show lines of symmetry in a quadrilateral (in different	С	D	Reflect into segment B creating a symmetry. Then reflect A into C, creating another symmetry. Finally, reflect from B to D. Make your design as interesting as you can.	
>	orientations) Show lines of symmetry in circle	Create a school logo It must have at least of It must also relate to t way.	one line of symmetry.	Symmetry in Nature Make up a reference book showing all symmetrical patterns in nature.	
	Create simple symmetrical figures and show lines of symmetry	You could start with c	one of these shapes.	Use photographs you have taken or pictures you have downloaded from the Internet.	
*	Recognise lines of symmetry in given shapes			You should group your examples, using subheadings like animals, insects, leaves, etc.	

Spring 2: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry: 2D S presented in dif - Complete a sin of symmetry	Me	My Teacher	
Can you symmet	u create simple symmetrical figures and show lines of ry?		
Do yo	u understand about lines of symmetry within a circle?		
	you show lines of symmetry in a square and angle in different orientations?		
	n you show lines of symmetry in a square and tangle?		
	an you show lines of symmetry in an equilateral or sceles triangle?		
C	Can you explain what the term symmetry is?		


Year 4: Spring 2

Week 5: Multiplication & Division

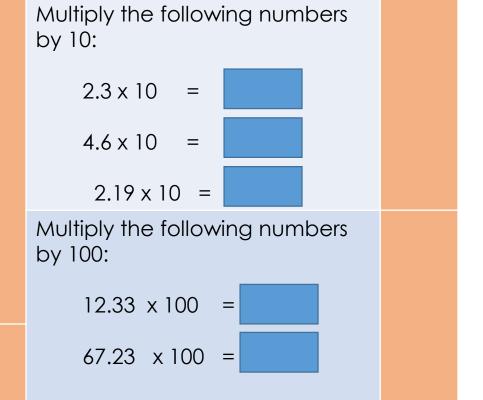
Decimals: Find the effect of multiplying a number with up to two decimal places by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

Spring 2: Week 5: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Objective:Decimals: Find the effect of multiplying a number with up to two decimalMultiplication &places by 10 and 100, identifying the value of the digits in the answer as
ones, tenths and hundredths.

Look at the number 4.16 Place the numbers into the table below:


ones	tenths	hundredths

Now do the same with 2.26

ones	tenths	hundredths

Continue the sequence:

0.6; 0.7; 0.8;

Spring 2: Week 5: Practice and Consolidation

Multiplication & Division: Decimals: Find the effect of multiplying a number with up to two decimal places by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:				
 Multiply any number with up to 2 decimal places by 10 and express the answer using tenths. Multiply any number with up to 2 decimal places by 100 and express the answer using tenths and hundredths. 	 Work with pupils on a matrix which specifies ones; tenths and hundreds. Physically show pupils what happens when you multiply a decimal number by 10. Explain how moving the decimal place to the right is one way of checking accuracy. Go to do that with other numbers with one decimal place so that they recognise 0.2 x 10 is 2. Now take 2 decimal place numbers and multiply by 10 so pupils are confident about the use of the tenths and hundredths columns. 134 x 100 = 134. Help pupils understand how this is recorded. Then multiply other decimal numbers by 100, etc. 	Place the following decimal numbers with up to 2 decimal places into the matrix below: 2.75; 5.01; 9.25; 6.69; 7.72; 8.84; 9.98; 9.93 ones tenths hundredths What is the value of the bold digit in the following numbers?: 6.45; 3.91; 5.25; 6.47; 7.82; 8.39; 9.38; 2.73				
		Multiply the following numbers by 10:Multiply the following numbers by 100:3.564.25;6.159.2713.2612.8923.6712.3623.7612.3416.2816.276.236.598.277.520.131.357.439.4112.8810.0221.431.54				

Spring 2: Week 5: Mastering this Objective – Deeper Understanding

Multiplication & Division: Decimals: Find the effect of multiplying a number with up two decimal places by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

Teaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:					
 Multiply any number with up to 2 decimal places by 10 and express the answer using tenths. Multiply any number with up to 2 decimal places by 100 and express the answer using 	place which, an answer be Write down of place which, an answer be Write down of place which,	kwards a number with when multiplie etween 30 and when multiplie etween 90 and a number with when multiplie etween 120 an	ed by 10, gives d 40. one decimal ed by 10, gives d 100. one decimal ed by 100, give	5	Which is the correct sign? 10. $2 \div \text{ or } x \ 10 = 1.02$ $23.9 \div \text{ or } x \ 10 = 239$ $112.4 \div \text{ or } x \ 10 = 11.24$ $34.23 \div \text{ or } x \ 10 = 342.3$ $541.6 \div \text{ or } x \ 10 = 5416$ $32.48 \div \text{ or } x \ 10 = 324.8$ Now make 3 for your friend to complete.	
tenths and hundredths.	Complete the following table:				Money, Measures and Distance	
	X 10	Number 244.8	÷10		£23.89 x 10 3.45Km x 10 6.26Kg x 10	£2.89 x 100 3.45Km x 100 6.26Kg x 100
		54.23		£1.45 x 10		£1.45 x 100
	1.76				7.23Km x 10 8.26Kg x 10	7.23Km x 100 8.26Kg ÷x 100
		3.92		£256 x 10 £256 x 100		

41.98

Spring 2: Week 5: Working at greater depth

Multiplication & Division: Decimals: Find the effect of multiplying a number with up to two decimal places by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

Teaching Activities for pupils working at greater depth:

Sequence

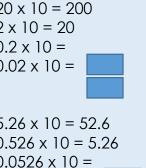
Working Backwards

number with up to 2 decimal places by 10 and express the answer using tenths. Multiply any \geq number with up to 2 decimal places by 100 and express the answer using tenths and hundredths.

Multiply any

	x100	x10	No.	÷10	÷100	100 workers r each.
	Complet	Bonuses				
9	I multiply 6.2. Who	0.0526 x 10 = 0.00526 x 10				
)	I multiply 6.2. Who	5.26 x 10 = 52 0.526 x 10 = 5				
•	I multiply 0.3. Who I multiply 0.3. Who					

75


97.1

343.8

25.78

92.57

Continue the patterns:

 $52.9 \times 100 = 5290$ 5.29 x 100 =

 $3.45 \times 100 = 345$

 $34.5 \times 100 =$

es

orkers received a bonus of £74.50

How much was the bonus worth before it was divided by 100?

How much would each worker have got if the bonus was divided by 10 people?

10 friends equally share £48,992 after a lottery win. How much did each get?

Spring 2: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Decimals: Find the effect of multiplying a number with up to two decimal places by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.	Me	My Teacher
Can you answer word problems related to multiplying by 10 and 100 when there are decimals involved?		
Can you multiply a monetary value by 10 or 100?		
Can you multiply a number with two decimal places by 100?		
Can you multiply a number with one decimal place by 100?		
Can you multiply a number with two decimal places by 10?		
Can you multiply a number with one decimal place by 10?		
Can you continue a sequence in tenths and in hundredths?		
Can you recognise the value of each digit in a number that has a tens, ones, tenths and hundredths?		

Year 4: Spring 2

Week 6: Consolidate and Assess

- Start this week by revising the learning covered in the Autumn and Spring terms so as to ensure pupils are fluent and secure with their basic skills.
- Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in the Autumn and Spring terms.
- Analyse the results and use information to help focus the pre-teaching sessions, as needed, for the following term.

Year 4: Spring 2: Week 6

The focus of the consolidation should be the following aspects:

- Count on/back in steps of 2s, 3s, 4s, 5s, 8s, 10s, 6s, 7s, and 9s
- Recall the 2, 3, 4, 5, 6, 7, 8, 9 and 10 times tables and the derived division facts
- Count on/back in multiples of 7 from 0
- Count on/back in 25s, 50s, and 100s from 0 to 10,000 and in 1000s from 0 to 10,000 and beyond
- Count in tenths, hundredths, read and write numbers with up to 2 decimal places and compare numbers with the same number of decimal places up to 2 decimal places
- Find 10/100/1000 more or less than a given number beyond 5000
- Read and write all numbers to at least 10,000 in both numerals and words
- Order a set of numbers (4 and/or 5) to 50,000 and beyond in increasing and decreasing value
- Compare numbers up to 50,000 and beyond using =, <, > symbols
- Round numbers up to and beyond 10,000 to the nearest 10, 100 or 1000
- Add/subtract: 3-digit and 1-digit numbers, a 3-digit number and tens and a 3-digit number and hundreds, combinations of 2 and 3 digit numbers
- Count on/back in $\frac{1}{2}$ s , $\frac{1}{3}$ s , $\frac{1}{10}$ s and other unit fractions including on a number line
- Find complements to 100 and to 1000 and recall addition and subtraction facts for 100 and 1000 (e.g. 37 + 63 = 100, 63 + 37 = 100, 100 37 = 63, 100 63 = 37, 630+370 = 1000)
- Although practise and consolidation should be on-going through each half term, during Week 6 there should be greater opportunity taken to check pupils' learning and understanding.
- Summative and Formative assessment procedures should help teachers gain a clear picture as to which pupils are at different stages, including mastery and greater depth.

YEAR 4 : SUMMER 1: Overview and Teaching Steps										
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6					
5 Place Value	3 Fractions	4 Fractions	4 Measures Length/ Mass/ Capacity/Time	4 Geometry Position & Direction	5 Fractions					
Compare and order numbers beyond 1000	Find the effect of dividing a 1-digit or 2- digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.	Count up and down in hundredths; recognise that hundredths arise from dividing an object into 100 equal parts and in dividing numbers or quantities by 100.	Convert between different units of measure (e.g. km to m; hr to min)	-Describe positions on a 2D grid as coordinates in the first quadrant - Describe movements between positions as translations of a given unit to the left/right and up/down - Plot specified points and draw sides to complete given polygon	-Recognise and write decimals equivalents of any number of tenths or hundredths - Recognise and write decimal equivalents to 1/4, 1/2 and 3/4.					
 Know which number in a set of 4 digit numbers is the greatest Know which number in a set of 4 digit numbers is the smallest Order a set of 4 digit numbers from smallest to largest Order a set of 4 digit numbers from largest to smallest 	 Divide any 2 digit number by 10 and express the answer using tenths. Divide any 2 digit number by 100 and express the answer using tenths and hundredths. 	 Count up in hundredths starting at zero Count back in hundredths to zero Count up in hundredths starting at any 'hundredth number' Count back in hundredths starting at any 'hundredth number' Know that hundredths arise from dividing an object, quantity or number into 100 equal parts Place factions (hundredths) in order – ascending and descending. 	 Revise relationships between measures: 1000m = 1km; 100cm = 1m; 10mm = 1cm Revise relationships between measures: 1000g = 1kg Revise relationships between measures: 60 min = 1 hour; 60 secs = 1 min; 12 months = 1 year Solve problems involving conversion between units of measure Express a distance of more than 1km in m Express a distance of more than 1cm in mm Express a mass of more than 1 lig in g Express the passing of time of more than 1 hour in minutes Express the passing of time of more than 1 minute in seconds. 	 Read coordinates using both axes Plot points using both axes Answer questions involving coordinates Create shapes by plotting points in first quadrant Explain a change in a given position by the movement made along the axes of the quadrant Use numbered axes to plot points to form a polygon Describe the properties of the polygon 	 Know that 1/10 = 0.1 [for each tenth value] Know that 1/100 = 0.01 [for each hundredth value] Know that 0.25 = 1/4 Know that 0.5 = 1/2 Know that 0.75 = 3/4 					

Year 4: Summer 1

Week 1: Place Value

Compare and order numbers beyond 1000

Summer 1: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Summer 1: Week 1					
Objective: Place Value	Compar	Compare and order numbers beyond 1000					
What is the value of the number in bold?			Put these numbers in order (smallest first)	r			
236 7				2391; 3729; 1045; 3602			
2190							
8 3 01				8201; 5025; 6925; 1492			
1 830							
5 4 01				2314; 2301; 2391; 2377			
11 7 6							
9 9 20				5151; 4141; 3131; 2121			
402 6							

Summer 1: Week 1: Practice and Consolidation

Place Value: Compare and order numbers beyond 1000

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:				
 Know which number in a set of 4 digit numbers is the greatest Know which number in a set 	number in a set of 4 digit numbers is the greatest Know which number in a set of 4 digit numbers is the smallest Number in a set smallest	What is the value of the bolded digit in the following numbers: 5294 2910 9205 1627 4931 6501 8912 5012 6103 3290 1620 3106				
 numbers is the smallest Order a set of 4 digit numbers from smallest to largest 		What are the following partitioned numbers in standard form(the first is done for you)? $2000 + 300 + 20 + 9 = 2329$ $4000 + 500 + 30 + 7 =$ $8000 + 200 + 0 + 8 =$ $2000 + 600 + 30 + 2 =$ $1000 + 0 + 0 + 3 =$ $7000 + 400 + 40 + 1 =$				
digit numbers from largest to		Put the following numbers into the correct place on the table below: 2591 2301 9036 8914 9201 7812 8201 1003 Thousands Hundreds Tens Ones				
		Put the following numbers in order (smallest first) 2591 2301 9036 8914 9201 7812 8201 1003				

Summer 1: Week 1: Mastering this Objective – Deeper Understanding

Place Value: Compare and order numbers beyond 1000

	aching quence	If pupils have mastered this objective they will be able to complete these activities independently:					
A A A	number in a set of 4 digit numbers is the smallest	Creating 4-digit numbers Create a number where the thousands value is 2 more than the hundreds and the tens is 5 more than the ones. Make up 4 different numbers. Create a number where the thousands value is the largest digit, the hundreds is the smallest value and the tens and ones are the same.	6000 = hundreds 5000 = tens 2000 = hundreds 550 = tens 1500 = tens				
>		Write these as digits: Four thousand, three hundred and sixteen. Six thousand, four hundred and twelve. Nine thousand, two hundred and eighteen. Six thousand and twenty six.	Make up 6 four-digit numbers and place them in order according to their value (smallest first). Make up 4-digit numbers whose sum is 9,				
		What is 100 more than 4289? What is 10 more than 2319? What is 1000 more than 4012? What is 100 more than 3901? What is 100 more than 2901? What is 10 more than 2391? What is 200 more than 2812?	eg, 3312. What is the largest number you can make? What is the smallest and second smallest number you can make? Now make up other 4-digit numbers whose sum is 12 and find the largest; second largest; smallest and second smallest numbers possible.				

Summer 1: Week 1: Working at greater depth

Place Value: Compare and order numbers beyond 1000

Teaching Sequence

Activities for pupils working at greater depth:

Know which number in a set of 4 digit numbers is the greatest

- Know which number in a set of 4 digit numbers is the smallest
- Order a set of 4 digit numbers from smallest to largest
- Order a set of 4 digit numbers from largest to smallest

Matrix Order

6	8	1	2
8	2	5	4
3	5	1	7
7	2	6	4

Create 8, four-digit numbers by using the rows and columns above, eg, 6812, 8254, etc.

Then place the 8 numbers in order according to value – smallest first. Now make another 4 x 4 matrix for your friend to complete.

Make up a 4 digit number from the cards above and then make up another which is more than 1000 bigger or smaller than your original.

Choose another 4 and this time make the difference more than 100 but less than 500.

Card Game

Take 40 cards and write a 4-digit number on each as shown below:

Create a game with a set of rules that you can write out.

You could, for example, just have sets of cards face down in front of four players and then each picks one up in turn and whoever has the largest or smallest value is the winner.

Now create your own game.

Difference and sum

The difference between two 4-digit numbers is 1587 and their sum is 4845.

What could the numbers be?

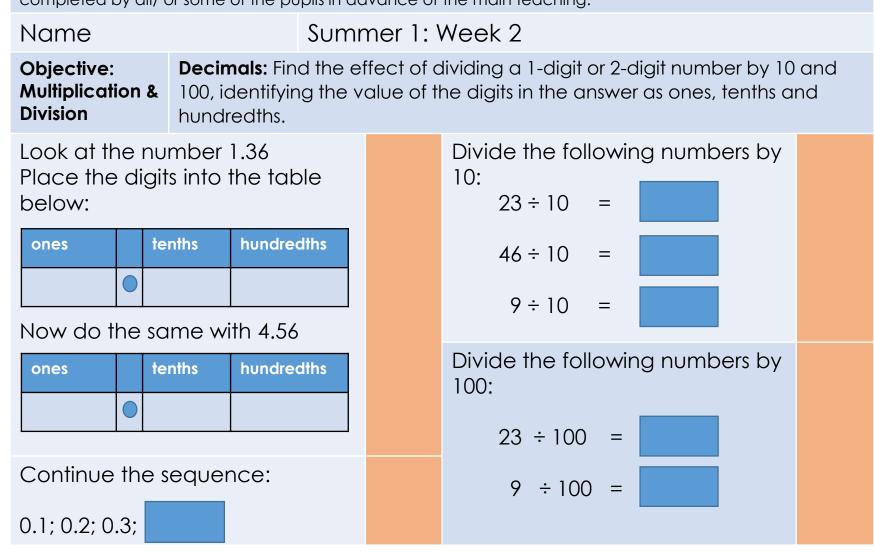
The difference between another set of two 4-digit numbers is 1313 and their sum is 7121.

What could the numbers be?

Summer 1: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value: Compare and order numbers beyond 1000	Ме	My Teacher
Can you order a set of 4-digit numbers from largest to smallest?	1	
Can you order a set of 4-digit numbers from smallest to largest?		
Can you work out which of two 4-digit numbers is the greater and smaller?		
Can you partition any number up to 9,999 showing the value of each digit?		
Do you know and use terms: ones, tens, hundreds and thousands correctly?		


Year 4: Summer 1

Week 2: Fractions

Find the effect of dividing a 1-digit or 2-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

Summer 1: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Summer 1: Week 2: Practice and Consolidation

Multiplication & Division: Decimals: Find the effect of dividing a 1-digit or 2-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

Teaching Sequence	Oral a Activit Examp		Pencil and Paper Activities Examples:							
 Divide any digit numination of the answer using tent Divide any digit numination of the answer using tent Divide any digit numination of the answer using tenths and hundredt 	 Follow Spring with p press Follow Spring with p which tenths Physic what tenths Physic what you d Explained pupils has he follow that tenths Do the mode pupils has he follow that tenths Now tenths Now tenths 	ving on from g 2 Week 5, work oupils on a matrix a specifies ones; s and hundreds. cally show pupils happens when divide 1 by 10. in how that is ded as 0.1 using natrix to show s exactly what appened is with other digit numbers so hey recognise 2 s 0.2. take 0.1 and e that by 10 and e pupils confident t the use of the	into the 2.4 one What is 3	e matrix b 5; 3.01; s the valu	e of the ; 5.25; 6.2	mal num 29; 7.12; tenths bold digi 3.4 9 ; 7. 9 2 nbers 9.27	8.34; 9.2	8; 2.93 undredth ollowing 2. 4 8; 2.13 the follow	s number	rs?:
	 hundredths column. 1 ÷ 100 = 0.001. Help pupils understand how this is recorded. Then divide 2 by 100, etc. 		23.76	12.34	16.28	16.27	6.23	6.59	8.27	7.52

Summer 1: Week 2: Mastering this Objective – Deeper Understanding

Multiplication & Division: Decimals: Find the effect of dividing a 1-digit or 2-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

Teaching Sequence	lf pupils ha activities in	they will be	able to compl	ete these				
 Divide any 2 digit number by 10 and express the answer using tenths. Divide any 2 digit number by 100 and express the answer using tenths and hundredths. 	one decimal 1 by 10, gives ar). one decimal 1 by 10, gives ar)0. one decimal 1 by 10, gives ar 30.	10. 2 ÷ 0 23.9 ÷ 0 112.4 ÷ 0 34.23 ÷ 0 541.6 ÷ 0 32.48 ÷ 0	e correct sign? or x 10 = 1.02 or x 10 = 239 or x 10 = 11.24 or x 10 = 342.3 or x 10 = 5416 or x 10 = 324.8 3 for your friend	to complete.				
	Complete the	e following tab	le:	-	Money, Measures and Distance			
	X 10	Number	÷10	Work out th	nese questions:			
		234.8		£23.89 ÷ 10 3.45Km ÷ 10		9 ÷ 100 = m ÷ 100 =		
		54.23		6.26Kg÷10) = 6.26K	(g ÷ 100 =		
		1.46		£1.45 ÷ 10 ÷ 7.23Km ÷ 1		5 ÷ 100 = (m ÷ 100 =		
		2.92		8.26Kg ÷ 10 £256 ÷ 10 =		(g ÷ 100 = ÷ 100 =		
		(1.00		200 - 10	200	100		

61.28

Summer 1: Week 2: Working at greater depth

Multiplication & Division: Decimals: Find the effect of dividing a 1-digit or 2-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

Teaching

Activities for pupils working at greater depth:

Sequence

 \succ

Divide any 2

the answer

using tenths.

Divide any 2

answer using

tenths and

hundredths.

100 and express the

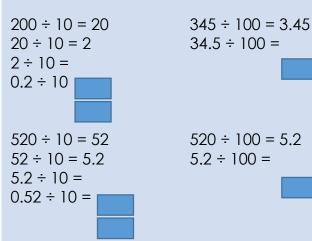
digit number by

digit number by 10 and express

Working Backwards

I divide a number by 10 and the answer is 0.3. What number did I start with?

I divide a number by 100 and the answer is 0.3. What was the number in the first place?


I divide a number by 10 and the answer is 6.2. What number did I start with?

I divide a number by 100 and the answer is 6.2. What number did I start with?

Complete the following table:

x100	x10	No.	÷10	÷100
		45		
		67.1		
		123.8		
		25.98		
		12.57		

Continue the patterns:

Bonuses

100 workers received a bonus of £34.50 each.

How much was the bonus worth before it was divided by 100?

How much would each worker have got if the bonus was divided by 10 people?

10 friends equally share £8,892 after a lottery win.

How much did each get?

Summer 1: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Decimals: Find the effect of dividing a 1- digit or 2-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.	Me	My Teacher
Can you answer word problems related to dividing by 10 and 100 when there are decimals involved?		
Can you divide a monetary value by 10 or 100?		
Can you divide a number with two decimal places by 100?		
Can you divide a number with one decimal place by 100?		
Can you divide a number with two decimal places by 10?		
Can you divide a number with one decimal place by 10?		
Can you continue a sequence in tenths and in hundredths?		
Can you recognise the value of each digit in a number that has a tens, ones, tenths and hundredths?		

Year 4: Summer 1

Week 3: Fractions

Count up and down in hundredths; recognise that hundredths arise from dividing an object into 100 equal parts and in dividing numbers or quantities by 100.

Summer 1: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name Sun		Summer 1: Week 3					
Objective: Fractions		Count up and down in hundredths; recognise that hundredths arise from dividing an object into 100 equal parts and in dividing numbers or quantities by 100.					
Continue t	he sequences:		Find one hundre	edth of:			
0.3; 0.5; 0.7	7; 0.9;		£15.50				
1.7; 1.5; 1.	3; 1.1;		236Kg				
2.13; 2.15;	2.17;		£75				
6.89; 6.84;	6.79; 6.74;		450Km				
12.67; 12.57	7; 12.47;		£880				
66.91; 66.9	5; 66.99;		56.9L				
56.97; 55.8	7; 54.77;		471Kg				

Summer 1: Week 3: Practice and Consolidation

Fractions: Count up and down in hundredths; recognise that hundredths arise from dividing an object into 100 equal parts and in dividing numbers or quantities by 100.

	aching quence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:								
A A	Count up in hundredths starting at zero Count back in hundredths to zero Count up in	 Explain that hundredths are created by dividing by 100. Show the hundredth value in decimal and fractional form Remind pupils of the relationship between tenths and hundredths. Pupils need to know that 10 hundredths is equivalent to one tenth. Use a metre stick to first show one tenth 	Match th 0.0 <u>7</u> 100	2	imal valu 0.03 <u>2</u> 100	ue to the 0.07 <u>9</u> 100	e fraction 0.09 <u>6</u> 100				
>	hundredths starting at any 'hundredth number' Count back in hundredths starting at any 'hundredth		Continue 0.03 0.01	e these 0.05 0.05	sequend 0.07 0.09						
>	number' Know that hundredths arise from dividing an object, quantity or number into		Now do 3 100	the sar 5 100	ne with t 7 100	hese:					
>	100 equal parts and then go on to	Fill in the	2/100	g numbe 0.03 3/100	rs	0.05	0.06	7/100	0.08		

Summer 1: Week 3: Mastering this Objective – Deeper Understanding

Fractions: Count up and down in hundredths; recognise that hundredths arise from dividing an object into 100 equal parts and in dividing numbers or quantities by 100.

Teaching Sequence	If pupils have mastered this objective t activities independently:	hey will be able to complete these					
 Count up in hundredths starting at zero Count back in hundredths to zero 	 One hundredth of a crowd of 2800 were under five years of age. How many people were five or over? Three hundredths of 1500 sheep had a lamb in January. How many sheep did 	Think of another way to write these hundredths fractions: $\frac{10}{100} \frac{20}{100} \frac{30}{100} \frac{40}{100} \frac{50}{100}$					
 Count up in hundredths starting at any 'hundredth number' Count back in 	 not have a lamb in January? Nine hundredths of the 3200 competitors were from North Korea. How many competitors came from North Korea? 	Find 1/100 th of the following: 100 150 250 £3 50 450 750 £55 1500metres					
 hundredths starting at any 'hundredth number' Know that hundredths arise from dividing an object, quantity or number into 100 equal parts Place factions (hundredths) in order – ascending and descending. 	Put the correct symbol < or > in each box 3.03 3.33 0.37 0.32 0.28 2.08 4.01 4.12 6.16 6.06	Look at these 8 cards: 4 0 1 5 • 2 1 0 3 6 Using as many or as few as you need, how many numbers with two decimal places can you make up that are between 5.01 and 6.06.					

Summer 1: Week 3: Working at greater depth

Fractions: Count up and down in hundredths; recognise that hundredths arise from dividing an object into 100 equal parts and in dividing numbers or quantities by 100.

Teaching Sequence	Activities for pupils working at greater c	depth:
 Count up in hundredths starting at zero Count back in hundredths to zero Count up in hundredths starting at any 'hundredth number' 	What do you notice? 1/10 of 100 = 10 1/100 of 100 = 1 2/10 of 100 = 20 2/100 of 100 = 2 How can you use this to work out: 6/10 of 200 6/100 of 200?	What needs to be added? What needs to be added to 3.53 to give 3.58? What needs to be added to 3.16 to give 3.21? What needs to be added to 3.11 to give 3.2?
 Count back in hundredths starting at any 'hundredth number' Know that hundredths arise from dividing an object, quantity or number into 100 equal parts Place factions (hundredths) in order – ascending and descending. 	 Write a decimal fraction that is less than 0.1 but more than 0.01. Now write its fractional equivalent. Write a decimal fraction that is less than 0.3 but more than 0.21. Now write its fractional equivalent. Write a decimal fraction that is less than 0.5 but more than 0.39. Now write its fractional equivalent. Think of 5 more similar questions to ask your friend. 	 A special cake weighs 4Kg. There are several ingredients used. Half of the cake is made from flour. Three tenths of the cake is made of milk. Three hundredths of the cake is made from a special spice. How much flour was there? How much milk was there? How much special spice was there? Now make up similar problems involving mixtures.

Summer 1: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Fractions: Count up and down in hundredths; recognise that hundredths arise from dividing an object into 100 equal parts and in dividing numbers or quantities by 100.	Me	My Teacher
Can you place hundredths (fractions) in ascending and descending order?		
Can you count up in hundredths starting from zero?		
Can you count back in hundredths to zero?		
Can you count up in hundredths starting from any 'hundredth number'?		
Can you count up or back in hundredths starting from any hundredth number?		
Do you know that hundredths comes from dividing a number or quantity by 100?		
Do you know that 0.01 is 1/100?		
Do you know that 1/10 is 0.1?		

Year 4: Summer 1

Week 4: Measures: Length/ Mass/ Capacity/ Time

Convert between different units of measure (e.g. km to m; hr to min)

Summer 1: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Sumr	Summer 1: Week 4								
Objective: Measures	•	ength/ Mass/ Capacity/ Time: Convert between different units of measure e.g. km to m; hr to min)								
How many seconds are there in each minute? How many cm are there in one metre?				How many seconds are there in 2 and a						
				half minutes?						
How many gro there in 1Kg?	ims are			How many metres did Frank run if he ran to						
How many ml in 1 litre?	How many ml are there in 1 litre?			his next village which is 2.5Km away?						
How many minutes are there in 1 day?				How many minutes are there during lunch						
How many metres are there in 1 metre? How many mm are there in 1 cm.?				time which lasts for 1 hour and 15 minutes?						
				How many grams are there in 3 Kg?						

Summer 1: Week 4: Practice and Consolidation

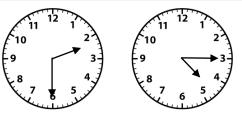
Measures: Length/Mass/Capacity/Time: Convert between different units of measure (e.g. km to m; hr to min)

Teaching Sequence

Oral and Mental Activities: Examples:

Pencil and Paper Activities Examples:

Fill in the missing numbers:


Revise relationships between measures: 1000m = 1km; 100cm = 1m; 10mm = 1cm

- Revise relationships between measures: 1000g = 1kg
- Revise relationships between measures: 60 min = 1 hour; 60 secs = 1 min; 12 months = 1 year
- Solve problems involving conversion between units of measure
- Express a distance of more than 1km in m
- Express a distance of more than 1 cm in mm
- Express a mass of more than 1kg in g
- Express a volume of more than 11 in ml
- Express the passing of time of more than 1 hour in minutes
- Express the passing of time of more than 1 minute in seconds.

- This is mostly a reminder unit, however there will be opportunities to extend pupils' thinking.
- Remind pupils of the relationships between metres and Km; between grams and Kg; between ml and L; and between seconds, minutes and hours.
- Help pupils to express an amount of more than a Km; Kg or Litres in metres; grams and millilitres respectively.
- Then move on to time and express minutes in seconds and express hours in minutes.

Kg	grams	Km	metres	Litres	ml
3.2			1750	9	
	2000	4.1			3200
4.4			3200	5.1	
	2100	6.5			6500
6.1		5.8		7.7	

How many mm are there in 5cm? How many mm are there in 8.5cm? How many cm are there in 8.2 metres?

How many minutes have passed between these two times?

How many seconds are there in 3 minutes and 15 seconds?

It takes 3 minutes to walk to the bus stop and the bus journey lasts 5 minutes and 30 seconds.

How many seconds has passed since I started to walk to the bus stop?

Summer 1: Week 4: Mastering this Objective – Deeper Understanding

Measures: Length/Mass/Capacity/Time: Convert between different units of measure (e.g. km to m; hr to min)

Teaching Sequence

≻

≻

≻

≻

≻

≻

Revise relationships

between measures:

1000m = 1km; 100cm = 1m; 10mm = 1cm

Revise relationships

between measures:

Revise relationships

between measures:

60 min = 1 hour: 60

involving conversion

Express a distance of more than 1km in m

Express a distance of

more than 1cm in

Express a mass of

more than 1kg in g

Express a volume of

more than 11 in ml

Express the passing

Express the passing

of time of more than

1 minute in seconds.

of time of more than 1 hour in minutes

secs = 1 min; 12 months = 1 year

Solve problems

between units of

measure

mm

1000g = 1kg

If pupils have mastered this objective they will be able to complete these activities independently:

Training Routine

Hannah is a 800 metres runner. During a typical week she will have run 5 races of 800 metres and she will have trained by running 5 Km per day for 3 days and 10Km per day for 2 days.

How many Km will Hannah have run in the week?

Climbing Stairs

When Jamila has climbed 8 stairs he is 2 metres off the ground. Each step measures the same. How high is each step?

How many steps will he need to climb before he is 5 metres off the ground?

Toy Box

Joseph puts all his wooden bricks into his toy box.

Each brick weighs the same.

The toy box weighs 2.5Kg when it is empty. After he has placed 10 bricks in the toy box, the box weighs 7.5Kg. How much does each brick weigh?

Hannah's Training Runs

Below is a table to show how fast Hannah has run 800 metres during her training.

Day	Time
Sunday	2 min 23 secs
Monday	2 min 35 secs
Tuesday	2 min 55 secs
Wednesday	3 min 01 secs
Thursday	2 min 34 secs
Friday	2min 21 secs
Saturday	2 min 11 secs

Which day did she run the fastest? How many seconds did she take to run the 800 metres on Friday? What is the difference, in seconds, between

her time during her fastest run and her slowest run?

Give a reason as to why Hannah had a very slow run on Wednesday.

Summer 1: Week 4: Working at greater depth

Measures: Length/Mass/Capacity/Time: Convert between different units of measure (e.g. km to m; hr to min)

Teaching Sequence

- Revise relationships between measures: 1000m = 1km; 100cm = 1m; 10mm = 1cm
- Revise relationships between measures: 1000g = 1kg
- Revise relationships between measures: 60 min = 1 hour; 60 secs = 1 min; 12 months = 1 year
- Solve problems involving conversion between units of measure
- Express a distance of more than 1km in m
- Express a distance of more than 1 cm in mm
- Express a mass of more than 1kg in g
- Express a volume of more than 11 in ml
- Express the passing of time of more than 1 hour in minutes
- Express the passing of time of more than 1 minute in seconds.

Activities for pupils working at greater depth:

Fill in the missing boxes so that the amounts are in order from smallest to greatest:

Along the coast there are 3 lighthouses.

The first light shines on for 3 seconds and then off for 3 seconds. The second light shines on for 4

seconds and then off for 4 seconds. The third shines on for 5 seconds and then off for 5 seconds. They have all just come on at the same time. When will be the next time all three lights will be off together?

David and Claire run for a total of 60Km per week. David runs three times as much as Claire. How far does each one run? On average, David runs 1Km in 4 minutes and, on average, Claire runs 1Km in 5 minutes. What is the difference in the amount of time each spends on the road each week? Add amounts of weight to the empty spaces so that all horizontal and vertical lines add up the same amount.

1.4Km		
	400m	1Km
m		1½Km

Now create a table like this for:

- Mass, and
- Time

and let your friends solve it.

Henry says that there are 5000 minutes between midday on Good Friday and midday on Easter Monday. Is he right? If not, how far out is he?

Summer 1: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

	Length/ Mass/ Capacity/ Time: Convert between different easure (e.g. km to m; hr to min)	Me	My Teacher
Can y secor	you express the passing of time of more than 1 minute in ands?	4	
	you express the passing of time of more than 1 hour in utes?		
Сс	In you express an amount of more than 11 in ml?		
(Can you express a weight of more than 1Kg in grams?		
	Can you express a distance of more than 1 cm in mm?		
	Can you express a distance of more than 1Km in metres?		
	Do you remember that: 60 min = 1 hour; 60sec = 1 min; 12 month = 1 year?		
	Do you remember that: 1000m = 1Km; 100cm = 1m; 10mm = 1cm; 1000g = 1kg?		

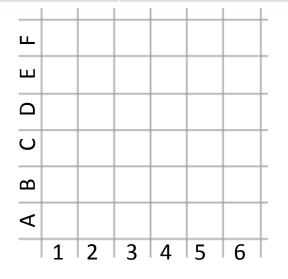
Year 4: Summer 1

Week 5: Geometry: Position & Direction

- -Describe positions on a 2D grid as coordinates in the first quadrant - Describe movements between positions as translations of a given unit to the left/right and up/down
- Plot specified points and draw sides to complete given polygon

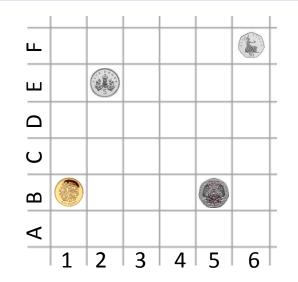
Summer 1: Week 5: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.


Name

Summer 1: Week 5

Objective: Geometry


Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant - Describe movements between positions as translations of a given unit to the left/right and up/down

- Plot specified points and draw sides to complete given polygon

Join the following positions: 1B; 3E and 5B. What shape have you formed?

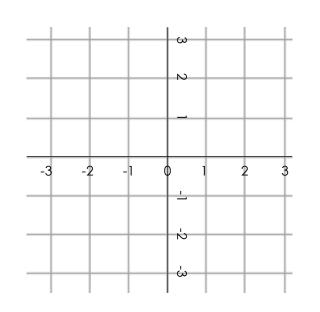
Join 1C to 4C; Join 4C to 4F; Join 4F to 1F and then join 1F to 1C. What shape have you formed?

Describe the position of: 5p coin; 20p coin 50p coin £1 coin

Summer 1: Week 5: Practice and Consolidation

Geometry: Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant; Describe movements between positions as translations of a given unit to the left/right and up/down; Plot specified points and draw sides to complete given polygon

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:
 Read coordinates using both axes Plot points using both axes Answer questions involving coordinates Create shapes by plotting points in first quadrant 	coordinates using both axes Plot points using both axeschess or draughts board and get them to work in pairs and move a chess or draught pairs and move a chess or draughtAnswer questions involving coordinateschess or draughts board and get 	Use 2 pieces of squared paper as shown. On the first create a horizontal (using numbers) and vertical (using letters) axes where the full square is identified. On the second, the horizontal and vertical axes are marked on the lines so that a point can be identified. Now identify squares or points and let your partner find them.
 Explain a change in a given position by the movement made along the axes of the quadrant Use numbered axes to plot points to form a polygon Describe the properties of the polygon 	 games such as battleships and others which require pupils to know about co- ordinates. Introduce the terms: reflect; rotate and translate in relation to changing positions of the shapes. 	 Divide the grid as shown so that you have 4 quadrants. Identify each point by number and letter. Create a regular 2D shape in the first quadrant and reflect it to the quadrant to the right and then to the quadrant immediately below. Plot the points carefully. Provide your partner with a set of points to reflect your initial shape. Identify points on the 4 quadrants by numbering the horizontal axes using negative numbers to the left of the centre and positive numbers to the right.


Summer 1: Week 5: Mastering this Objective – Deeper Understanding

Geometry: Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant; Describe movements between positions as translations of a given unit to the left/right and up/down; Plot specified points and draw sides to complete given polygon

If pupils have mastered this objective they will be able to complete these

Teaching Sequence

- Read coordinates using both axes
- Plot points using both axes
- Answer questions involving coordinates
- Create shapes by plotting points in first quadrant
- Explain a change in a given position by the movement made along the axes of the quadrant
- Use numbered axes to plot points to form a polygon
- Describe the properties of the polygon

activities independently:

Mark your grid as shown with numbers on both axes going from -10 to 10. Plot out a polygon (start with a hexagon) in the first quadrant (top left hand side). Make a note of the coordinates. Now reflect the shape into the second quadrant (top right). Using the grid marked as shown, reflect the polygon so that it appears in all four quadrants.

Make sure that the distance from the axes is the same in all four quadrants.

Now use another grid to create another shape or polygon and practise reflecting as with the first polygon.

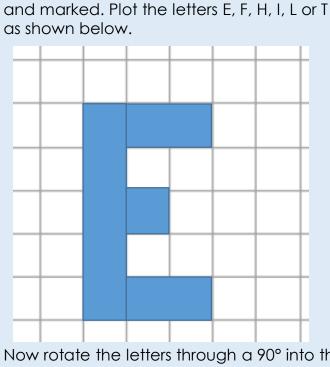
Plot a set of coordinates to create a shape without drawing the shape. Let your partner use the coordinates to make a shape and then go on to reflect the shape into all 4 quadrants.

Now create a shape in the first quadrant and rotate the shape, by moving the shape through a 90° turn.

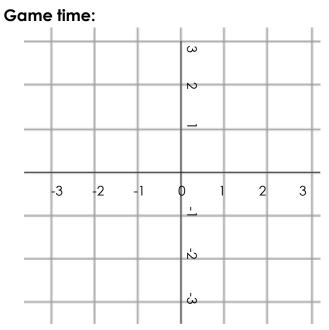
Plot the rotated shape in the second quadrant.

Continue rotating the shape through into the third and fourth quadrants.

Summer 1: Week 5: Working at greater depth


Geometry: Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant; Describe movements between positions as translations of a given unit to the left/right and up/down; Plot specified points and draw sides to complete given polygon

Teaching Sequence


Read coordinates using both axes Using a grid with the 4 quadrants shown and marked. Plot the letters E, F, H, I, L or

- Plot points using both axes
- Answer questions involving coordinates
- Create shapes by plotting points in first quadrant
- Explain a change in a given position by the movement made along the axes of the quadrant
- Use numbered axes to plot points to form a polygon
- Describe the properties of the polygon

Activities for pupils working at greater depth:

Now rotate the letters through a 90° into the next quadrant. Make a note of the coordinates in each of the quadrants. Provide coordinates for your partner to try to plot and rotate letters.

Take a grid and mark as shown above. Create a game that has movement around the grid in all four quadrants.

The movement is organised by naming the coordinates.

Your aim is to create the most interesting game.

Summer 1: Week 5: Assessment (Linked to Spring 1 Week 4)

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry: Position & Direction: Describe positions on a 2D grid as coordinates in the first quadrant; Describe movements between positions as translations of a given unit to the left/right and up/down; Plot specified points and draw sides to complete given polygon	Me	My Teacher
Can you, on a grid with 4 quadrants, translate a shape from one quadrant to the next?		
Can you, on a grid with 4 quadrants, rotate a shape from one quadrant to the next?		
Can you, on a grid with 4 quadrants, reflect a shape from one quadrant to the next?		
Can you create a grid that has 4 quadrants and plot their coordinates?		
Can you plot a shape on a grid and provide the coordinates?		
Can you identify a given point on a grid according to the coordinates given?		
Can you identify a given square on a grid according to the coordinates given?		

Year 4: Summer 1

Week 6: Fractions

- -Recognise and write decimal equivalents of any number of tenths or hundredths
- Recognise and write decimal equivalents to $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$.

Summer 1: Week 6: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Autumn 1: Week 6							
Objective: Fractions	hundredths	Recognise and write decimal equivalents of any number of tenths or nundredths Recognise and write decimal equivalents to 1/4, 1/2 and 3/4.							
Comple	ete the table b	elow:		Finding values:					
Fractional Value	Decimal Vo	alue		Find 0.1 of 10					
4/10 th				Find ¼ of £20					
1/4				Find 0.3 of 10					
	0.8			Find ¾ of £20					
	0.7			Find 0.01 of 2000					
3/10 th				Find 0.6 of 100					
9/10 th				Find 0.3 of 100					
	0.01			Find 1/10 th of 400					

Summer 1: Week 6: Practice and Consolidation

Fractions: -Recognise and write decimal equivalents of any number of tenths or hundredths - Recognise and write decimal equivalents to 1/4, 1/2 and 3/4.

	eaching Sequence	Oral and Mental Activities: Examples:	Examples:									
>	 Know that 1/10 = 0.1 [for each 	 Use 2 metre sticks and show how to 	Comp	lete the	e table	s belov	v:					
r.	tenth value]	divide each up into		0.2		0.4		0.6		0.8		1.0
	 Know that 1/100 = 0.01 [for each 	10 equal pieces.On the first show the value of each	<u>1</u> 10		<u>3</u> 10		<u>5</u> 10		<u>Z</u> 10		<u>9</u> 10	
	hundredth value]	piece by fraction,										
>	Know that 0.25	ie, 1/10 th • On the second		0.02		0.04		0.06		0.08		1.0
2	= $\frac{1}{4}$ Know that 0.5 = $\frac{1}{2}$	 on the second show the value of each piece by decimal fraction 0.1 Show other equivalents, such as, 0.3 = 3/10th etc. 	100		<u>3</u> 100		<u>5</u> 100		7 100		<u>9</u> 100	
2	• Know that 0.75 = $\frac{3}{4}$		What is What is What is	s 1/100	th of 30	00Ś		What i		25Kg? of 4500 £780?		
		 Know that 0.5 is not just 5/10th but also ½ and that ¼ lies between 0.2 and 0.3 and is equivalent to 0.25. Similarly, ¾ is 0.75. 	Match the following: 0.1 $\frac{1}{2}$ 0.5 $7/10^{th}$ 0.75 $4/10^{th}$ 0.4 $\frac{1}{4}$ 0.25 $9/10^{th}$ 0.7 $\frac{3}{4}$ 0.9 $1/10^{th}$			0 th	 Which is the greater? 0.5 of £100 or ³/₄ of £80 0.25 of £10 or 1/10th of £5 0.6 of 100Kg or ¹/₄ of 200Kg 0.75 of 400 or 7/10th of 400 0.01 of 1000 or 1/10th of 3000 0.05 of 1000 or ¹/₂ of 80 					

Summer 1: Week 6: Mastering this Objective – Deeper Understanding

Fractions: -Recognise and write decimal equivalents of any number of tenths or hundredths - Recognise and write decimal equivalents to 1/4, 1/2 and 3/4.

Teaching Sequence	If pupils have mastered this objective t activities independently:	hey will be able to complete these
 Know that 1/10 = 0.1 [for each tenth value] Know that 	Match decimals and fractions Match these decimals to its fraction equivalent:	What comes next? 83/100, 82/100, 81/100,,,
1/100 = 0.01 [for each hundredth value]	0.1 0.25 0.5 0.7 0.75 0.3	0.02, 0.04, 0.06, 0.08, 0.10,, 31/100, 41/100, 51/100,,,
 Know that 0.25 = 1/4 Know that 0.5 = 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4, 1.6, 1.8, 2.0,, 6/10, 7/10, 8/10,9/10,1,,
> Know that 0.75 = $\frac{3}{4}$	 Give an example of a fraction that is more than a half but less than a whole. Give an example of a fraction or decimal that is more than a quarter but less than a 0.4. Give an example of a fraction or decimal that is more than ³/₄ but less than a 0.9. Give an example of a fraction or decimal that is more than 1/10th but less than a 0.3. Give an example of a fraction or decimal that is more than 1/10th but less than a 0.3. 	Put the correct symbol < or > in each box: 0.001 2/10 th 0.75 7/10 th 0.3 3/100 th 0.002 2/10 th
	• Give an example of a fraction or decimal that is more than 1/4 but less than a 0.4.	0.8 8/100 th

Summer 1: Week 6: Working at greater depth

Fractions: -Recognise and write decimals equivalents of any number of tenths or hundredths - Recognise and write decimal equivalents to 1/4, 1/2 and 3/4.

Teaching Sequence

 \geq

 \geq

Know that 1/10

= 0.1 [for each

1/100 = 0.01 [for

Know that 0.25

Know that 0.5 =

Know that 0.75

tenth value]

Know that

hundredth

each

value]

 $= \frac{1}{4}$

1/2

 $= \frac{3}{4}$

Activities for pupils working at greater depth:

Look at the following cards:

Make up a number that is between 3 and 4.

Now create another set of cards, one with a decimal point and the other three with numbers.

Ask your friends to solve similar problems to the one you started with.

Dividing by 10 or 100

- I divide a number by 100 and the answer is 0.4. What number did I start with?
- I divide a number by 100 and the answer is ¾. What number did I start with?
- I divide a number by 10 and the answer is 0.01. What number did I start with?
- I divide a number by 10 and the answer is 7/10th. What number did I start with?
- I divide a number by 10 and the answer is 3.15. What number did I start with?

Put these numbers in the correct order, starting with the smallest.

1/4	0.75	5/10 th
3/4	0.6	0.004
3/10 th	0.35	0.003
0.004	3/100 th	3/10 th
0.6	1/2	4/10 th

Two different numbers added together make 0.1. Give three examples of what the numbers could have been. Two different numbers subtracted from each other make 0.4. Give three examples of what the numbers could have been. Two different numbers added together make 0.04. Give three examples of what the numbers could have been. Two different numbers subtracted from each other make 0.04. Give three examples of what the numbers could have been.

Summer 1: Week 6: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

of tenths	-Recognise and write decimal equivalents of any number or hundredths se and write decimal equivalents to ¼, ½ and ¾.	Me	My Teacher
Do	you know that 3/100 is 0.03?	4	
D	o you know that 0.01 is 1/100?		
	Do you know that 6/10 is 0.6?		
	Do you know that 1/10 is 0.1?		
	Do you know that ¾ is 0.75?		
	Do you know that ¼ is 0.25?		
	Do you know that ½ is 0.5?		

	YEAR 4 : SUMMER 2: Overview and Teaching Steps									
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6					
6 Place Value	Subtraction Decimals		Consolidate and Assess							
Round any number to the nearest 10, 100 or 1000	Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Round decimals with one decimal place to the nearest whole number. Compare numbers with the same number of decimal places up to two decimal places.	Identify acute and obtuse angles and compare and order angles up to two right angles by size.	Start this week by revising the learning covered in Year 4 so as to ensure pupils are fluent and secure					
 Round any number up to 100 to the nearest 10 Round any number up to 1000 to the nearest 10 Round any number up to 1000 to the nearest 100 Round any number up to 10,000 to the nearest 1000 	 Compare information in bar charts to answer questions Solve addition problems using information in bar charts to answer questions Solve difference problems using information in bar charts to answer questions Compare information in pictograms to answer questions Solve addition problems using information in pictograms to answer questions Solve difference problems using information in pictograms to answer questions Solve difference problems using information in pictograms to answer questions Solve difference problems using information in tables to answer questions Solve addition problems using information in tables to answer questions Solve difference problems using information in tables to answer questions Solve difference problems using information in tables to answer questions 	 Solve two-step problems using addition to 1000. Solve two-step problems with subtraction to 1000. Solve two-step problems using addition and subtraction to 1000. 	 Round a number with one decimal place to nearest whole number. Given 3 numbers with one decimal place, place in order (smallest to largest and vice versa). Given 5 numbers with one decimal place, place in order (smallest to largest and vice versa). Given 3 numbers with two decimal places, place in order (smallest to largest and vice versa). Given 3 numbers with two decimal places, place in order (smallest to largest and vice versa). Given 5 numbers with two decimal places, place in order (smallest to largest and vice versa). Given 5 numbers with two decimal places, place in order (smallest to largest and vice versa). 	 Know that an angle smaller than a right angle is known as an acute angle Know that an angle larger than a right angle is known as an obtuse angle Identify and describe an acute angle Identify and describe an obtuse angle Compare and order angles by size 	with their basic skills. Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in Year 4. Analyse the results and use information to help focus the pre- teaching sessions, as needed, for the following term.					

Year 4: Summer 2

Week 1: Place Value

Round any number to the nearest 10, 100 or 1000

Summer 2: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Summer 2: Week 1							
Objective: Place Value	Round any r	Round any number to the nearest 10, 100 or 1000						
Rc	ound these	numb	ers to t	he nearest 10, 100 a	or 1000			
67 to the nec 10	irest			771 to the nearest 100				
72 to the nearest 10				1987 to the nearest 1000				
145 to the nearest 10				8756 to the nearest 1000				
567 to the nearest 10				9385 to the nearest 1000				
234 to the neo 100	arest			3567 to the nearest 1000				

Summer 2: Week 1: Practice and Consolidation

Place Value: Round any number to the nearest 10, 100 or 1000

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:						
 Round any number up to 100 to the nearest 10 Round any number up to 1000 to the 	 Explain to pupils why it is sometimes very useful to be able to get an approximate value. Go on to explain that in mathematics a 	Round the 23 103	following n 45 119	umbers to 77 152	9 the ne 89 328	arest 10: 73 529	84 210	
 1000 to the nearest 10 Round any number up to 1000 to the nearest 100 Round any 	 system known as 'rounding' gives a better overall picture rather than just approximating. Explain how the numbers close to the 	Round to th 340 1627	ne nearest 410 2389	100: 1145 2163	2178 3714	451 561		
number up to 10,000 to the nearest 1000	smaller of two numbers is rounded to that number and the numbers closest to the higher of the	Round to th 9348	ne nearest 5150	1000: 3718	9573	7728	8 9082	
	 two numbers is rounded to the higher number. Explain the rule about a number exactly half way between two numbers. 	Round the £ 13.87 £12.96	following m £12.45 £45.50	noney am £12.78 £34.85	3 £2	0 the nec 28,90 7.89	arest £1: £24.50 £19.99	

Summer 2: Week 1: Mastering this Objective – Deeper Understanding

Place Value: Round any number to the nearest 10, 100 or 1000

	eaching equence						
A A A A	Round any number up to 100 to the nearest 10 Round any number up to 1000 to the nearest 10 Round any number up to 1000 to the nearest 100 Round any	 Rounding Puzzles A number has the digits 6 and 3 and to the nearest 10 rounds to 60. What is the number? A number has the digits 5 and 3 and to the nearest 10 rounds to 40. What is the number? A number has the digits 2, 7 and 8 and to the nearest 100 rounds to 800. What is the number? 	Rounding to 10 and then to 100 Round 296 to the nearest 10. Round it to the nearest 100. What do you notice? Suggest other numbers like this. Round 797 to the nearest 10. Round it to the nearest 100. What do you notice? Suggest other numbers like this.				
	number up to 10,000 to the nearest 1000	Rounding Problems When rounded to the nearest £1 Tom has £17. What is the most Tom could possibly have? What is the smallest amount he could possibly have? When rounded to the nearest £10 Jayne has £140. What is the most Jayne could possibly have? What is the smallest amount she could possibly have?	 Round the following amounts: 156 Kg of meat to the nearest 10Kg 187 metres to the nearest 10m 271 cm to the nearest metre 3972 grams to the nearest Kg 67p to the nearest 10p 67p to the nearest £1 £592 to the nearest £10 55 Km to the nearest 10Km £3.15 to the nearest 10p 				

Summer 2: Week 1: Working at greater depth

Place Value: Round any number to the nearest 10, 100 or 1000

	TeachingActivities for pupils working at greater depth:Sequence							
	Round any number up to	Smallest and Largest numbers	Rounding Money					
>	100 to the nearest 10 Round any number up to	A number, rounded to the nearest 10, is 540. What are the smallest and largest possible numbers it could be?	Harris and Jones have rounded their money to the nearest £10. Harris has £80 and Jones has £120.					
A	1000 to the nearest 10 Round any number up to 1000 to the nearest 100 Round any	A number, rounded to the nearest 10, is 780. What are the smallest and largest possible numbers it could be? A number, rounded to the nearest 100, is 1700. What are the smallest and largest possible numbers it could be?	Consider the largest and smallest amounts that each one could actually have. What is the largest possible difference in their money? What is the smallest possible difference in their money?					
	number up to 10,000 to the nearest 1000	Running Rounded Tom and Jemma ran for exactly 10 minutes. When rounded to the nearest 100m Tom had run 2300m and Jemma had run 3100m. What could have been the greatest distance between the two? What could have been the closest distance between the two?	Butcher Problem Percy the butcher had a disagreement with his wife about the amount of meat chops they could make. Percy has, rounded to the nearest 10Kg, 700Kg of meat. Each chop weighs 500gms. Percy says he is a 100% certain he will be able to make 1400 chops. Is he right? Work out the maximum and minimum number of chops he could make.					

Summer 2: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

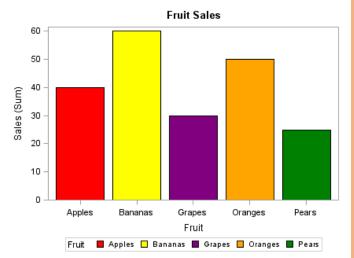
Place Value:	Place Value: Round any number to the nearest 10, 100 or 1000			
	an you round any number up to 10,000 to the nearest	1		
	Can you round any number up to 1000 to the nearest 00?			
	Can you round any number up to 1000 to the nearest 10?			
	Can you round any number up to 100 to the nearest 10?			

Year 4: Summer 2

Week 2: Statistics

Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs

Summer 2: Week 2: Pre-Learning Task


The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name

Summer 2: Week 2

Objective:Solve comparison, sum and difference problems using informationStatisticspresented in bar charts, pictograms, tables and other graphs

Look at the bar chart below which shows the sales of different fruit on a Sunday.

How many apples were sold? What is the difference between the most popular fruit and the least popular fruit? Look at the pictogram below. This shows pupils' favourite sport in a London school.

RUGBY	* * * * * * * * *
NETBALL	* * * * * * * * *
TENNIS	* * * *
Носкеу	* *
SOCCER	* * * * * * *

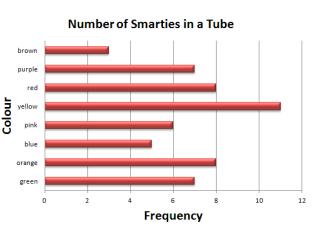
k = 20

How many pupils chose hockey? How many more pupils favour netball over tennis? How many prefer rugby to soccer?

Summer 2: Week 2: Practice and Consolidation

Statistics: Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs

	aching quence	Oral and Mental Activities: Examples:	Pencil Examp		iper A	ctivities	
X X X X	Compare information in bar charts to answer questions Solve addition problems using information in bar charts to answer questions Solve difference problems using information in bar charts to answer questions Compare information in pictograms to answer questions Solve addition problems using information in	 Have three charts ready (could be on IWB). The three charts are a bar chart; pictogram and table giving the same information. Explain to the pupils how they differ and get them to consider which is their favourite and 	Blue(Brown(Green(Orange(Purple(Red(••••	Look at the information on the pictogram. How many students favoured red over brown? How many students chose brown, yellow or purple? How many students chose orange? Which were the three most favoured colours, in order? Which were two least popular?
X X X	pictograms to answer questions Solve difference problems using information in pictograms to answer questions Compare information in tables to answer questions Solve addition problems using information in tables to answer questions Solve difference problems using information in tables to answer questions	 Help pupils to think of a range of questions they could ask related to the information on the charts. Take particular care to talk about the scales along the axes. 	Baseball Basketball Cross Country Lacrosse Soccer Swimming Tennis Track and Fiel Wrestling Softball Volleyball	35 29 29 10	Females 0 14 18 19 24 33 10 23 0 16 16	Total Participants 29 28 34 54 53 62 20 57 37 16 16	This table tells you about students' favourite sports at university. Which sport was favourite? What is the difference between those that favoured lacrosse and tennis? Which sports proved to be most popular with males?


Summer 2: Week 2: Mastering this Objective – Deeper Understanding

Statistics: Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

- Compare information in bar charts to answer questions
- Solve addition problems using information in bar charts to answer questions
- Solve difference problems using information in bar charts to answer questions
- Compare information in pictograms to answer questions
- Solve addition problems using information in pictograms to answer questions
- Solve difference problems using information in pictograms to answer questions
- Compare information in tables to answer questions
- Solve addition problems using information in tables to answer questions
- Solve difference problems using information in tables to answer questions

Age (years)

2

3

4

5

6

7

8

Height (cm)

75

86

91

99

105

110

117

121

Smarties in the tube

Which colour is most frequently seen in a Smarties tube?

Is this for all Smarties tubes? How could you find out?

If you put all the yellow, red and orange Smarties together do they make up more than all the rest put together?

Do you think the bar chart would be the same if the subject was 'The favourite Smarties colour of the children in your class'?

Height chart

What is this table telling you?

Between which two years do you grow most? Between which two years do you grow the least? How much do you typically grow between the ages of 1 and 7?

Thinking of height, create a table, bar chart or pictogram related to information you collect about people's height.

Present your information in the best possible way and think of a range of questions to ask someone who looks at it.

Summer 2: Week 2: Working at greater depth

Statistics: Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs

Teaching Sequence

Activities for pupils working at greater depth:

Percentages of mobile phone owners using various mobile phone features

- Compare information in bar charts to answer questions
- Solve addition problems using information in bar charts to answer questions
- Solve difference problems using information in bar charts to answer questions
- Compare information in pictograms to answer questions
- Solve addition problems using information in pictograms to answer questions
- Solve difference problems using information in pictograms to answer questions
- Compare information in tables to answer questions
- Solve addition problems using information in tables to answer questions
 Solve difference problems using information in tables to

answer questions

	2006	2008	2010
Make calls	100	100	99
Take photos	66	71	76
Send & receive text messages	73	75	79
Play games	17	42	41
Search the Internet	no data	41	73
Play music	12	18	26
Record video	no data	9	35

Look at the information above about how people have changed their uses of mobile phones.

In 2006 and 2008 all mobile phone owners used the phones to make calls.

In 2006 two-thirds of owners used the phone to take photographs.

Look carefully at the information and list three things that you have learnt.

Why do you think very few people seemed to play games or play music on their mobile phones in 2006?

Why has the percentage using the internet shot upwards in the last few years?

What's it all about?

Look at the information contained within the graph below.

What do you think is being measured? Consider that whatever is being measured is done on a daily basis for one week. Try and come up with a plausible suggestion as to what this is all about. There are no right or wrong answers but your explanation needs to fit the graph.

Summer 2: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Statistics: Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	Ме	My Teacher
Can you solve problems in relation to bar charts, pictograms or tables?		
Can you answer questions related to sum or difference in relation to bar charts, pictograms or tables?		
Can you read a table accurately?		
Can you read a pictogram accurately with scales on the axes?		
Can you read a pictogram accurately with no scales on the axes?		
Can you read a bar chart accurately with scales on the axes?		
Can you read a bar chart accurately with no scales on the axes?		

Year 4: Summer 2

Week 3: Addition & Subtraction

Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Summer 2: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name Su		Summer 2: Week 3				
Objective: Addition & Subtraction		Solve addition and subtraction two-step problems in contexts, decidin which operations and methods to use and why.				
have scored 129	all season Rovers 9 goals. Billy was the 2 goals. How many 5 score?		Harry bought four items at the supermarket: the Sugar cost £1.95; Butter cost 87p; a Treat cost 15p and a loaf of bread cost 75p. Harry paid with a £5. Did he have enough and if so, how much change did he get?			
A group of children put all their merit stickers together. They have 367. Helen has most with 87 and Tom has two fewer than Helen. If Helen and Tom removed their stickers, how many would be left?			There are 228 children in the school. 132 are in Key Stage 2. How many children are there that are not in Key Stage 2?			

Summer 2: Week 3: Practice and Consolidation

Addition & Subtraction: Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:
 Solve two-step problems using addition to 1000. 	 broblems using addition to 000. broblems with ubtraction to 000. broblems with ubtraction to 000. broblems using addition and ubtraction to 000. broblems using addition and ubtraction to 000. broblems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition and ubtraction to 000. clive two-step problems using addition addition, subtraction, or indeed 	In Happytown 6239 people watched the comedy programme; 3128 watched the sport and another 479 watched the news. Did more people watch the comedy than the sport and news altogether? What was the difference?
 Solve two-step problems with subtraction to 1000. Solve two-step 		At an international sports event there are 3278 competitors. 347 are from Poland; 267 are from Germany; 129 are from the UK and 501 are from France. All the others come from outside Europe. How many non-European competitors are there?
problems using addition and subtraction to		Zac saved £17 in June; £19 in July and £47 in August. He goes to his cousin's for a holiday and spends £29.50. How much money did Zac have left?
1000.		Three Keys, a pop group, had 6292 letters or emails from fans. The three members of the group decided to answer them by sending an autographed photograph to half the fans; a ticket to a show for a quarter of the fans; and both the ticket and autographed photograph to 600 fans. How many fans did not get anything?
		The local supermarket sent an order to the ice cream makers. They requested 3 large vanilla; 12 large strawberry and 5 large chocolate. Each of the vanilla costs £13; the strawberry is £2 each more than the vanilla and the chocolate is £4 each more than the vanilla. How much did the order cost?

Summer 2: Week 3: Mastering this Objective – Deeper Understanding

Addition & Subtraction: Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Teaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:							
 Solve two-step problems using addition to 1000. Solve two-step 	Mary, Helen an to spend. Cho below and sho	buy 3 presents nd Faye. He ha ose 3 presents f w how much c	s a total of £50 from the list	A family went on a special African safari holiday. At the resort the family were offered a number of excursions. The costs are set out below:				
problems with subtraction to	will be? Mary	Helen	Faye	Excursion	Safari overnight camp	Elephant Lake	Lion Park	
1000. ≻ Solve two-step	Coat £23	Talking Doll £16.50	Large Teddy Bear £13.50	Adult	£250	£120	£60	
problems using addition and	Jumper £16.50	Toy £19.50 Pushchair	Mini Farm £17	Child	£175	£80	£40	
subtraction to 1000.	Hair £14 Accessories	Doll's House £23.50	Selection of Games £15	Family ticket	£650	£280	£105	
	Dress £20.50	Toy £13.50 Computer	Toy tape recorder £21	How much will it cost for a family ticket fo				
	Select a gift for each sister. Write the gifts in your maths book making sure that the total does not come to more than £50. How much change will there be?			the overnight safari and for 2 adults to go to the lion park? Is it cheaper for a family of 2 adults and 2 children: to go on the overnight safari, or for 2 adults to go to the elephant lake and for 2 children to go to the lion park?			C	
	Sum and Difference If the difference between two numbers is 11 and their sum is 45, what are the two numbers?							

Summer 2: Week 3: Working at greater depth

Addition & Subtraction: Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

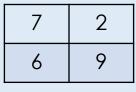
Teaching Sequence

Activities for pupils working at greater depth:

Wedding Treat

At a wedding the bride's father throws 5p; 10p; 2p and 1p coins out of the bride's car for children to collect.

John collected 32 coins and Helen


collected 27. John discovered that he had \pounds 1.35 and Helen had \pounds 1.25.

Work out the coins that each one had managed to collect.

There will be more than one answer but the amount and the number of coins have to match for both of them.

Summer Camp

Sweatshirt		Short	S	Shoes		
Extra warm	£30	Designer	£16	Trainers	£23	
Cotton	£15	White	£11	Black	£15	
Wool	£24	Blue	£13	Sandals	£13	
Short sleeves	£22	With a badge	£19	Jelly	£10	

Put any 4 numbers (0-9) into a 2x2 grid. Then create 4 x 2-digit numbers. In this example the four numbers would be 72; 69; 76 and 29.

Put 4 numbers in your 2x2 grid so that when added together your total is close to 100. Now do the same again but try to get as close to 200 as you can.

Children have to buy outfits for their summer camp. Each child needs a sweat shirt; shorts and shoes. The choices are set out in the table.

- How much will the cheapest option cost altogether?
- How much will the most expensive option cost altogether?
- You have a budget of £50. Calculate what you can afford and show how much change you will have from £50.

Create a problem for others to solve which includes a table such as this one.

reat

problems using addition to 1000.
 Solve two-step problems with

Solve two-step

problems with subtraction to 1000.

 Solve two-step problems using addition and subtraction to 1000.

Summer 2: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Subtraction: Solve addition and subtraction two-step n contexts, deciding which operations and methods to use	Me	My Teacher
an you solve a 2-step problem that requires addition and otraction to 1000?		
Can you solve a 2-step problem that requires subtraction to 1000?		
Can you solve a 2-step problem that requires addition to 1000?		
Can you solve word problems that require one step?		
Do you know which key words to look for to help you know which operation you are likely to need to use?		
Do you consistently read through a word problem carefully before trying to solve it?		

Year 4: Summer 2

Week 4: Fractions: Decimals

-Round decimals with one decimal place to the nearest whole number.

- Compare numbers with the same number of decimal places up to two decimal places.

Summer 2: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Summer 2: Week 4					
Objective: Fractions	Decimals: -Round decimals with one decimal place to the nearest whole number. - Compare numbers with the same number of decimal places up to two decimal places.					
Round the following decimal numbers to the nearest whole number			Which is the number with the greater value?			
17.3			3.12 or 3.21			
24.8			4.14 or 4.41			
19.3			3.42 or 3.24			
7.5			6.7 or 6.69			
16.5			5.6 or 5.55			
17.4			8.3 or 8.13			
29.6			10.56 or 10.65			
1.3			6.76 or 6.67			

Summer 2: Week 4: Practice and Consolidation

Fractions: Decimals: -Round decimals with one decimal place to the nearest whole number. - Compare numbers with the same number of decimal places up to two decimal places.

Teaching Sequence	Oral and Mental Activities: Examples:	Pencil and Pap Examples:	oer Activiti	es		
Round a number with one decima place to nearest whole number.	involved with	Round the followi 5.3; 8.5; 9.3;	•			
 Given 3 numbers with one decima place, place in order (smallest to largest and vice versa). Given 5 numbers with one decima place, place in 	 rounding. Remind pupils about the value of decimals and remind them of the terms tenths and hundredths. Use a set of cards or the IWB to get pupils to respond to either rounding to the nearest whole number or to compare any two numbers with up to decimal points. 	Use a set of cards decimal places. T whole number so Share the cards b Each player shou In turn, put your to number with the	The cards no that the fo between 2 t Id have a so op card in t	eed to have t cus is on the o o 4 players. et of cards th he middle ar	many with the decimal value at are face c	e same es. Iown.
 order (smallest to largest and vice versa). Given 3 numbers with two decimal places, place in order (smallest to largest and vice versa). 		A number with or whole number. Given the rounder numbers could he Example: A numb Give two exampl 28; 34; 67;	ed number; ave been. per roundec les for the fo	give two exa I to 25 could Ilowing numb	imples of who have been 2	at the 4.6 or 25.4
 Given 5 numbers with two decimal 		Circle the larger number in these	23.14	23.67	56.91	56.19
places, place in order (smallest to largest and vice		horizontal pairs	17.23 23.97	17.32 23.79	77.77 34.81	78.78 34.18
versa).			102.76	102.77	102.99	102.98

Summer 2: Week 4: Mastering this Objective – Deeper Understanding

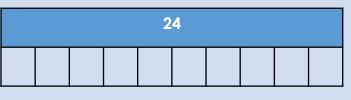
Fractions: Decimals: -Round decimals with one decimal place to the nearest whole number. - Compare numbers with the same number of decimal places up to two decimal places.

Teaching Sequence

 \triangleright

If pupils have mastered this objective they will be able to complete these activities independently:

Round a number with one decimal place to nearest whole number. Order the following sets of numbers and then round them to the nearest whole numbers:


- Given 3 numbers with one decimal place, place in order (smallest to largest and vice versa).
- Given 5 numbers with one decimal place, place in order (smallest to largest and vice versa).
- Given 3 numbers with two decimal places, place in order (smallest to largest and vice versa).
- Given 5 numbers with two decimal places, place in order (smallest to largest and vice versa).

23.8	16.3	2.34
17.9	16.4	5.76
24.6	16.5	11.57
27.1	16.6	9.63
72.5	16.7	13.84

Write down a two decimal place number that is larger than the one shown.

Given	Larger	Given	Larger
3.12		6.77	
8.34		9.34	
1.45		12.56	
9.34		102.56	

Given the rounded number of a one decimal place number write down all the possible numbers they could have been.

39								

Make a set of cards that have all the possible 2 decimal place numbers on them between 24 and 24.49.

Create a game which is about knowing which of two numbers is greater.

Play the game with your friends and make adjustments to the rules as needed before you copy out the rules.

Summer 2: Week 4: Working at greater depth

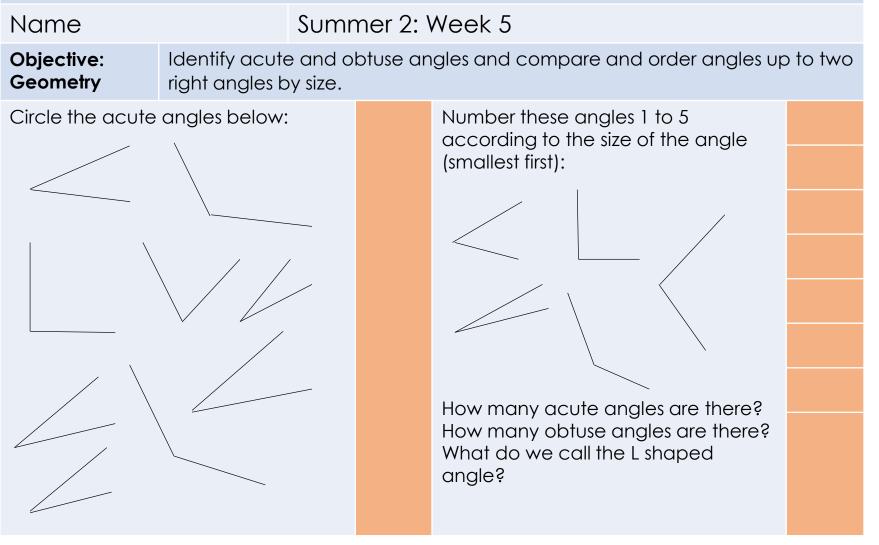
Fractions: Decimals: -Round decimals with one decimal place to the nearest whole number. - Compare numbers with the same number of decimal places up to two decimal places.

	aching quence	Activities for pupils working at greater of	lepth:
A	Round a number with one decimal place to nearest whole number. Given 3 numbers with one decimal place, place in order (smallest to largest and vice versa).	I am a number with one decimal place. When rounded to the nearest whole number I am 25. My decimal digit is 7. What is my number? I am a number between 20 and 30 with one decimal place. When the digits of my rounded number are	Make up a set of 5 numbers with the same whole number and one decimal place. Now make up another set of 5 numbers with the same whole number as before but this time with two decimal places. Using the set of 10, get your partner to put them in order and then then you put your partners in order.
A	 Given 5 numbers with one decimal place, place in order (smallest to largest and vice versa). Given 3 numbers with two decimal places, place in order (smallest to largest and vice versa). 	added together it makes 9. My decimal digit is 5. What is my number? Create a few more of these problems for your friends to solve.	Make a board with the whole numbers 24 to 29 on. Get pupils to place numbers with one or two decimal places on them in the correct place once they have been rounded.
> >		We are two numbers with each having 2 decimal places. We are both between 20 and 29. When adding all our 4 digits together both of us add up 12. We have the same ones value. What could our two number be? There may be more than one answer. Create your own problem along these lines for your friends to solve.	Create a board game that involves rounding to the nearest whole number and also decimal numbers up to two decimal places. You may think of ideas such as snakes and ladders or even draughts. If you use a dice it can be numbered as you wish and does not have to 1 to 6. Create the game with your partner and see if it can be played by others following your rules. Don't forget it has to feature decimals.

Summer 2: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

nearest wh	Decimals: -Round decimals with one decimal place to the nole number. The numbers with the same number of decimal places up to nal places.	Me	My Teacher
	Can you order a set of numbers with two decimal place giving the smallest number first?		
	Can you order a set of numbers with one decimal place giving the smallest number first?		
	Can you round a number with two decimal places to the nearest whole number?		
	Can you round a number with one decimal place to the nearest whole number?		
	Are you confident when dealing with numbers with tenths and hundredth values?		


Year 4: Summer 2

Week 5: Geometry

Identify acute and obtuse angles and compare and order angles up to two right angles by size.

Summer 2: Week 5: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Summer 2: Week 5: Practice and Consolidation

Geometry: Identify acute and obtuse angles and compare and order angles up to two right angles by size.

Teaching Sequence		Oral and Mental Activities: Examples:	Pencil and Paper Activities Examples:				
	Know that an angle smaller than a right angle is known as an acute angle Know that an angle larger than a right	 Remind pupils of the previous learning related to right angles. Look around the classroom; the playground and the wider environment and find right angles; acute angles and obtuse angles. Demonstrate making an angle smaller and larger by having two metre sticks and keeping the two ends together and opening to create an angle. Remind pupils of the vocabulary associated with angles: acute; obtuse; and right angle. Look at the angles within a triangle and obtuse angle and obtuse; ones. 	Find examples of acute; obtuse and right angles in the environment (including the classroom):				
X			Acute	Right	Angle	Obtuse	
			You could include photographs if you wish.				
A A A	angle is known as an obtuse angle Identify and describe an acute angle Identify and describe an obtuse angle Compare and order angles by		Look at the angle below. Now draw five angles that are greater than the one shown:		Look at the angle below. Now draw five angles that are smaller than the one shown:		
	size		Label each angle as obtuse.	acute or	Label ea obtuse.	ch angle as acute or	
			Draw five different triangles of different types. Mark any acute angle with A; any obtuse angle with O and a right angle with R. Why is not possible to have more obtuse angles than acute angles in any triangle?				

Summer 2: Week 5: Mastering this Objective – Deeper Understanding

Geometry: Identify acute and obtuse angles and compare and order angles up to two right angles by size.

Teaching Sequence		If pupils have mastered this objective they will be able to complete these activities independently:					
A	Know that an angle smaller than a right angle is known as an acute angle	Harry said that he had drawn a triangle which had two obtuse angles within it. Is this true or false? Explain your reasoning. Harry also stated that he had created a	Circle any acute and tick any obtuse angles in the following polygons and shapes:				
>	Know that an angle larger than a right angle is known	triangle that had two right angles. Is this true or false? Explain your reasoning.					
>	as an obtuse angle Identify and describe an	Rectangles and Squares					
>	acute angle Identify and describe an obtuse angle						
	Compare and order angles by size	If you draw a line across the diagonals of rectangles or squares how many acute angles do you create?					

Go through each shape and polygon again and mark each right angle with 'R'.

Summer 2: Week 5: Working at greater depth

Geometry: Identify acute and obtuse angles and compare and order angles up to two right angles by size.

Teaching Activities for pupils working at greater depth: Sequence Know that an **Capital Angles Describe Shapes** angle smaller Look at the following capital letters: Look at the three shapes below and than a right Mark each acute angle with 'A' and each describe them according to their sides; angle is known obtuse angle with 'O' and each right angle angles, etc. as an acute 'R'. angle Know that an \succ angle larger than a right angle is known as an obtuse angle Identify and \succ describe an acute angle Identify and \geq **Create Triangles** If lines are drawn diagonally across the describe an Create a triangle that has 2 acute and middle of this hexagon how many acute obtuse anale one obtuse anale. and obtuse angles can you spot? Compare and \succ • Create a triangle that has 3 acute order anales by anales. size Create a triangle that has one right angle and two acute angles. Why can you not create a triangle with two obtuse angles? Explain.

Summer 2: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry: Identify acute and obtuse angles and compare and order angles up to two right angles by size.			My Teacher
	Can you recognise acute, obtuse and right angles in different 2D shapes?	4	
	Can you compare angles and say which is the larger and smaller and order them?		
	Do you know what an angle that is less than a right angle is called?		
	Do you know what an angle that is less than a right angle called?		
	Do you know what an angle that is less than a right angle called?		
	Can you describe how to create an angle?		

Year 4: Summer 2

Week 6: Consolidate and Assess

- Start this week by revising the learning covered in Year 4 so as to ensure pupils are fluent and secure with their basic skills.
- Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in Year 4.
- Analyse the results and use information to help focus the intervention sessions, as needed, for the following term.

Year 4: Summer 2: Week 6

The focus of the consolidation should be the following aspects:

- Count on/back in steps of 11 and 12
- Recall the 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 times tables and the derived division facts
- Multiply and divide numbers mentally using place value and known facts including multiplying by 1 and 0 and dividing by 1
- Multiply together three numbers by using place value and known facts
- Partition 4 and begin to partition 5 digit numbers
- Count on/back in 25s, 50s, and 100s from 0 to 10,000 and in 1000s from 0 to 10,000 and beyond
- Count in tenths, hundredths, read and write numbers with up to 2 decimal places and compare numbers with the same number of decimal places up to 2 decimal places
- Find 10/100/1000 more or less than a given number beyond 10,000
- Read and write all numbers to at least 10,000 in both numerals and words
- Order a set of numbers (4 and/or 5) to 100,000 and beyond in increasing and decreasing value
- Compare numbers up to 100,000 and beyond using =, <, > symbols
- Round numbers up to and beyond 100,000 to the nearest 10, 100 or 1000
- Add/subtract: 3-digit and 1-digit numbers, a 3-digit number and tens and a 3-digit number and hundreds, combinations of 2 and 3 digit numbers
- Count on/back in $\frac{1}{2}$ s , $\frac{1}{3}$ s , $\frac{1}{10}$ s and other unit fractions including on a number line
- Find complements to 100 and to 1000 and recall addition and subtraction facts for 100 and 1000 (e.g. 37 + 63 = 100, 63 + 37 = 100, 100 37 = 63, 100 63 = 37, 530 + 470 = 1000)
- Although practise and consolidation should be on-going through each half term, during Week 6 there should be greater opportunity taken to check pupils' learning and understanding.
- Summative and Formative assessment procedures should help teachers gain a clear picture as to which pupils are at different stages, including mastery.