

Year 5

By Clive Davies

© Clive Davies 2016 All rights reserved

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without the prior written permission of the publisher. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, providing full acknowledgement is given. This publication should only be used be the purchasing organisation or individual. Focus Education does not grant permission for the purchaser to distribute the content of this publication outside their organisation, this includes placing the whole document or parts on social media or internet sites.

First Published in the UK in 2016 by Focus Education (UK) Ltd

Focus Education (UK) Ltd Publishing Talking Point Conference & Exhibition Centre Huddersfield Road Scouthead Saddleworth OL4 4AG

Focus Education (UK) Ltd Reg. No 4507968

FRN: F258(5)

Companies, institutions and other organisations wishing to make bulk purchases of books published by Focus Education should contact their local bookstore or Focus Education direct:

Customer Services, Focus Education, Talking Point Conference & Exhibition Centre, Huddersfield Road, Scouthead, Saddleworth, OL4 4AG Tel 01457 821818 Fax 01457 878205

> www.focus-education.co.uk customerservice@focus-education.co.uk Produced in Great Britain by Focus Education UK Ltd, Scouthead

(c) Focus Education (UK) Ltd

ABOUT THE AUTHOR

Clive Davies, OBE is one of the founding Directors of Focus working with school both nationally and internationally. He draws on a vast experience, including work as a headteacher, Ofsted inspector, trainer and consultant.

Clive has a wealth of experience working with schools to analyse their current position and supporting leaders to construct purposeful and fit-for-purpose self-evaluation systems which impact on pupil outcomes. Over recent years, Clive has been focusing particularly on the development of an approach to leading and delivering the curriculum which ensures a high degree of engagement for children. This approach to the curriculum is being used in schools across England. He is one of the innovators for the learning challenge curriculum which has gained national acclaim for its success. Clive works in all areas of school improvement and works from early years through the secondary phase.

As a headteacher, Clive's school gained a National Curriculum Award and featured in the TES as one of three schools recognised for its quality practice. Awarded an OBE for Services to Education in 2009, he still works with schools on an advisory basis, and is a highly sought after key note speaker at conferences both nationally and internationally.

Clive has written a wide range of publications which have become known for their straight forward and useful style; helping school leaders focus on what is most important to making a difference, including the best-selling 'Raising Standards by Setting Targets'. Some of Clive's most recent and best selling publications are:

- Making Good Lessons Outstanding
- Maths Learning Challenge Curriculum: Pre and Post Learning Challenges
- Talk for Success
- Science Learning Challenge Curriculum
- History & Geography Learning Challenge Curriculum
- Leading the EYFS (co-authored with Sarah Quinn)
- Assessing Science and Non Core Subjects: In the new National Curriculum (Years 1 to 6)
- Focus on Maths (co-authored with Helen Rowland)
- Assessing without Levels
- Empowering Learners: A Focus on Learning Behaviours
- Step up to the Challenge Series
- Making Book Scrutiny more Meaningful

Contents

Title	Page
<u>Overview of the year</u>	5
Autumn 1: Overview and Teaching Steps	6
Autumn 2: Overview and Teaching Steps	43
Spring 1: Overview and Teaching Steps	76
Spring 2: Overview and Teaching Steps	113
Summer 1: Overview and Teaching Steps	146
Summer 2: Overview and Teaching Steps	183

Year 5: Overview of the year								
Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2			
1 Place value	1 Multiplication and division, Factors & multiples	3 Place value. Roman numerals, and negative numbers	5 Multiplication & Division	4 Place value	5 Place value			
2 Place value Decimals	2 Multiplication & Division, including problems	3 Addition and subtraction, including problems	4 Geometry 2D and 3D shape	3 Fractions	5 Addition & Subtraction			
1 Addition and Subtraction, including problems	1 Fractions compare, order, equivalence	4 Multiplication and Division	2 Fractions	4 Measures Time	5 Fractions			
1 Geometry Angles	3 Multiplication & Division	2 Measures Area	3 Measures, including area and volume	4 Fractions	5 Measures Mass, volume & capacity			
1 Measures Perimeter and Area	1 Statistics and measures, including time	2 Geometry Reflection and Translation	2 Statistics and measures	4 Addition & Subtraction	5 Geometry Area and volume of shapes			
2 Addition and Subtraction, including Statistics	Consolidate and assess	3 Geometry	Consolidate and assess	6 Multiplication and division	Consolidate and assess			

YEAR 5 : AUTUMN 1: Overview and Teaching Steps								
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6			
1 Place Value	2 Place Value Decimals	1 Addition & Subtraction	1 Geometry Angles	1 Measures Perimeter and Area	2 Addition & Subtraction			
Count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000.	Count up and down in thousandths; recognise that thousandths arise from dividing an object into 1000 equal parts and in dividing numbers or quantities by 1000.	Add and subtract numbers mentally with increasingly large numbers.	Know angles are measured in degrees; estimate & compare acute, obtuse & reflex angles. Identify: - Angles at a point on a straight line & ½ a turn (total 180°) - Angles at a point & one whole turn (total 360°) - Other multiples of 90° Draw given angles & measure them in degrees	-Measure and calculate the perimeter of composite rectilinear shapes in cm and m. - Calculate & compare the area of rectangles (including squares, & including using standard units, square centimetres (cm ²) and square metres (m ²) & estimate the area of irregular shapes.	Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction).			
 Count forwards and backwards from any given number in steps of 100 Count forwards and backwards from a given number in steps of 1,000 Count forwards and backwards from a given number in steps of 10,000 Count forwards or backwards from a given number in steps of 100,000 Count forwards from a given number in steps of 100,000 Count forwards from a given number in steps of 100,000 Count forwards and backwards from a given number in steps of 1,000,000 	 Count up in thousandths starting at zero Count back in thousandths to zero Count up in thousandths starting at any 'thousandths number' Count back in thousandths starting at any 'thousandths starting at any 'thousandths starting at any 'thousandths Know that thousandths arise from dividing an object, quantity or number into 1000 equal parts Place fractions (thousandths) in order – ascending and descending. 	 Mentally: Add any two 2- digit numbers Subtract any 2- digit number from any other greater 2-digit number Subtract any 2- digit number from any 3-digit number Add any 2-digit and any 3-digit number Subtract any 2- digit number from any 4-digit number Subtract any 2- digit number from any 4-digit number Add together two 3-digit numbers Subtract a 3-digit number from a greater 3-digit number Add any 1000s number from a greater 5-digit number 	 them in degrees Know that 90° is equivalent to a quarter turn Know that 180° is equivalent to a half turn Know that 270° is equivalent to a three-quarter turn Know that 360° is equivalent to a full turn Estimate, compare and measure angles in drawings identifying acute, obtuse and reflex angles Able to use a protractor to draw angles Able to use a protractor to draw angles 	 Calculate perimeter of range of shapes, including composite shapes by dividing into smaller shapes Know the units of measure for calculating area and how to represent (cm²/m²) Explain how to calculate the area of a shape using a formula Calculate area using formula Calculate the area of composite shapes by dividing into smaller shapes Calculate the area of larger spaces using m² 	 Add numbers with up to 5- digits with no exchanging Add numbers with up to 5- digits with exchanging Subtract numbers with up to 5-digits with no exchanging Subtract numbers with up to 5-digits with exchanging 			

Year 5: Autumn 1

Week 1: Place Value

Count forward or backwards in steps of powers of 10 for any given number up to 1,000,000.

Autumn 1: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name Autumn 1: Week 1								
Objective: Place Value	Count forward to 1,000,000.	d or bac	d or backwards in steps of powers of 10 for any given number up					
	C	Count o	n or ba	ck as indicated.				
100 more than	237			10,000 less than 13978				
100 more than 327				100,000 more than 135,478				
100 less than 347				100,000 more than 656,625				
100 less than 672				100,000 less than 435,878				
1000 more than	า 257			100,000 less than 856,925				
1000 more thar	า 4298			1,000,000 more than 1,656,625				
1000 less than 3478				1,000,000 less than				
1000 less than 6625				4,935,878				
10,000 more than 13478				1,000,000 less than 1,856,925				

Autumn 1: Week 1: Practice and Consolidation

Place Value: Count forward or backwards in steps of powers of 10 for any given number up to 1,000,000.

	vence	Oral and Mental Activities Examples:	Pen Exai			ape	r Ao	ctiviti	es						
C fr	Count forwards and backwards rom any given number in steps	• As a class count on in powers of 10, 100, 1000 from any given number.	10, 1	00, 10		ack ir 10000 00;		Count 236	on fro	m		157	t back 9 325		
	of 100 Count forwards and backwards	 Then count back in 10, 100, 1000 from a given number. 	from num table	ber. l	Jse b	oth	-	10 100				10 100			
fr	rom a given number in steps	 Move on to counting forwards and 	use c	differe	ent			1000				1000	I		
С	of 1,000 Count forwards	backwards in 10,000; 100,000 and 1,000,000	backwards in 10,000; tables until you feel 10000		•			10000							
C	and backwards rom a given	from any given number. or subtracting in 100000				1000	00								
n	number in steps	 Help pupils to have rapid recall when 		ers of 10. 1000000				1000000							
> 0	Count forwards	adding or subtracting up to 1000000 to a												_	
fr n c > C	or backwards rom a given number in steps of 100,000 Count forwards and backwards	 given number. Create a system of rapid recall and chanting to help pupils with their mental agility. 	-1000000	- 100000	- 10000	- 1000	- 100	- 10	Number	+10	+100	+1000	+10000	+100000	+100000
fr n	rom a given number in steps of 1,000,000	 Move on then to add or subtract in powers of 10 rapidly from numbers with up to 7 digits. 							4689127						

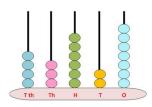
Autumn 1: Week 1: Mastering this Objective – Deeper Understanding

Place Value: Count forward or backwards in steps of powers of 10 for any given number up to 1,000,000.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

Count forwards \geq Start by writing 1 million. and backwards Now write the number that is 1 more than 1 from any given million: number in steps The number that is 10 more than 1 million: of 100 The number that is 100 more than 1 million: Count forwards \geq The number that is 1000 more than 1 million: and backwards The number that is 10000 more than 1 from a given million; number in steps The number that is 100000 more than 1 of 1,000 million: Count forwards \geq The number that is 1000000 more than 1 and backwards million; from a given Write the number that is 1 less than 1 million number in steps Now the number that is 10 less than 1 million of 10,000 Take a number Count forwards \geq 24579 How many 10s? or backwards 12874 How many 100s? from a given 3698 How many 10s? number in steps 729145 How many 10000s? of 100,000 3612074 How many 100s Count forwards \geq 12452937 How many 1000000s? and backwards from a given


4185 98126723

number in steps of 1,000,000

How many 100s? How many 1000000s?

Abacus

On an abacus with 5digits, place 25 beads so that you create different numbers.

Consider what are the largest and the smallest numbers you can make. Now move on and try and do the same with a six and then seven digit abacus. Stick to 25 beads and see what are the largest and smallest numbers you can make. It is worthwhile checking the second smallest and largest also.

Using the six digits below, make as many numbers as you can (aim for at least 12).

Now, from each number, find 10000 more and 10000 less than the original number.

Autumn 1: Week 1: Working at greater depth

Place Value: Count forward or backwards in steps of powers of 10 for any given number up to 1,000,000.

Teaching Activities for pupils working at greater depth: Sequence Count forwards Create six-digit numbers where the digit sum and backwards is sixteen and the hundreds digit is one. 5 children were given a maths problem from any given e.g. 540133, 623104 where the answer was 14850. number in steps What is the largest/smallest number you can Hamish wrote 13858 as his answer; of 100 make? Nicola wrote 14735; Count forwards \geq Jemma wrote 16187: and backwards Add 100000 to the smallest and the largest Aliz wrote 15925 and from a given Harriet wrote 14648. number. number in steps Who was closest to the answer and who of 1.000 Now create a 7-digit number where the was furthest away? \geq Count forwards digit sum is 19 and the thousands digit is 2. Explain how you know. and backwards What is the smallest/largest digit you can from a given make? number in steps Create sets of 5 cards: of 10,000 8 5 2 O 6 You need sets where you have an original Count forwards \geq number (5 or 6 digits); a number that is or backwards Using the number cards above make up 10000 greater; a number that is 10000 from a given two 5-digit numbers that are more than smaller; a number that is 1000 greater and a number in steps 10000 apart. number that is 1000 smaller than the original of 100,000 Now, make up two 5-digit numbers that are number. You should have 12 sets of 5 cards Count forwards \geq less than 10000 apart. (60 in total) and backwards Challenge yourself to find as many pairs The idea of the game is to play snap by from a given that are more than 10000 and as many collecting as many pairs as you can. You number in steps pairs that are less than 10000 apart. have to explain the relationship between of 1,000,000 the pair before you win it.

Autumn 1: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value: Count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000.	Ме	My Teacher
Can you count forwards and backwards from a given number in steps of 1000000s from a given number?		
Can you count forwards and backwards from a given number in steps of 100000s from a given number?		
Can you count forwards and backwards from a given number in steps of 10000s from a given number?		
Can you count forwards and backwards from a given number in steps of 1000s from a given number?		
Can you count forwards and backwards from a given number in steps of 100s from a given number?		
Can you count forwards and backwards from a given number in steps of 10s?		

Year 5: Autumn 1

Week 2: Place Value: Decimals

Count up and down in thousandths; recognise that thousandths arise from dividing an object into 1000 equal parts and in dividing numbers or quantities by 1000.

Autumn 1: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Autu	Autumn 1: Week 2					
Objective: Place Value		viding ar	unt up and down in thousandths; recognise that thousandths ding an object into 1000 equal parts and in dividing numbers by 1000.					
Write dow	n the next 2	numbe	ers:	Find one thous	sandth of:			
2.7; 2.5; 2.3; 2.1	l;			£1500.00				
4.33; 4.35; 4.37	;			2660Kg				
8.891; 8.841; 8.	791; 8.741;			£55,000				
12.267; 12.257;	12.247;			3800Km				
86.191; 86.195;	86.199;			£680,000				
66.397; 65.387;	64.377;			1256L				
36.097; 35.087;	34.077;			4710Kg				
541.987; 541.97	77; 541.967			729000cm				

Autumn 1: Week 2: Practice and Consolidation

Place Value: Decimals: Count up and down in thousandths; recognise that thousandths arise from dividing an object into 1000 equal parts and in dividing numbers or quantities by 1000.

	iching quence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:							
	Count up in thousandths starting at zero	Explain that thousandths are areated by dividing	Fill in the	e missing	number	'S:				
>	Count back in thousandths to	created by dividing by 1000. • Show the thousandths	0.001			0.004	0.005		0.007	
≻	zero Count up in	value in decimal and fractional form		2/1000	3/1000			6/1000		8/1000
	thousandths starting at any 'thousandths	 Remind pupils of the relationship between 	Match	the deci	mal valu	e to the	fraction:	-	-	
~	number'	tenths, hundredths and thousandths.	0.5	512	0.103	0.427	0.3	559 0	.776	
>	Count back in thousandths starting at any 'thousandths	 Pupils need to know that 100 thousandths is equivalent to one tenth and that 10 		<u>27</u> 00	<u>512</u> 1000	<u>559</u> 1000			<u>03</u> 000	
≻	number' Know that thousandths	thousandths is equivalent to one	Continu	e these	sequenc	es:				
	arise from dividing an	 hundredth. Use a metre stick to 	0.124	0.126	0.128	0.13	0			
	object, quantity or number into	first show one tenth and then go on to explain the value of	1.456	1.556.	1.656	1.75	56			
>	1000 equal parts Place fractions (thousandths) in	one hundredth and then one	How mo	any thou	sandths i	in:				
	order – ascending and descending.	thousandths.	One ter	nth	one	hundrec	Ith	one	whole	

Autumn 1: Week 2: Mastering this Objective – Deeper Understanding

Place Value: Decimals: Count up and down in thousandths; recognise that thousandths arise from dividing an object into 1000 equal parts and in dividing numbers or quantities by 1000.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

- Count up in thousandths starting at zero
- Count back in thousandths to zero
- Count up in thousandths starting at any 'thousandths number'
- Count back in thousandths starting at any 'thousandths number'
- Know that thousandths arise from dividing an object, quantity or number into 1000 equal parts
 Place fractions (thousandths) in order – ascending and

descending.

Look at these 8 cards:							
7	1	4	6				
5	3	7					

Using as many or as few as you need how many numbers with three decimal places can you make up that are between 7.001 and 7.105?

Find 1/1000th or 0.001 of the following amounts:

£50,000 5500 litres 183,920 Kg 345,000 cm 9800 Km 1,000,000 £129,500 4 million

- One thousandth of a town's population of 148000 were born on February 29th.
- How many people were not born on February 29th?
- Three thousandths of 15000 sailors had a sea sickness.
- How many sailors did not have sea sickness?
- Nine hundredths of the 32000 competitors were from France. How many competitors came from France?

The population of the UK is approximately 64,000,000. How much is one thousandth of the population?

The population of Jamaica is approximately 3,000,000. How much is one thousandth of the population?

The population of Cuba is approximately 11,000,000. How much is one thousandth of the population?

Autumn 1: Week 2: Working at greater depth

Place Value: Decimals: Count up and down in thousandths; recognise that thousandths arise from dividing an object into 1000 equal parts and in dividing numbers or quantities by 1000.

Teaching Sequence

 \geq

>

 \geq

 \geq

 \triangleright

 \geq

Activities for pupils working at greater depth:

Count up in thousandths	What's in a number:	More thanLess than			
starting at zero Count back in	Take a number like 23.763	 Write a decimal fraction that is less than 0.01 but more than 0.001. Now write its 			
thousandths to zero	It is less than 24	fractional equivalent.Write a decimal fraction that is less than			
Count up in thousandths starting at any	It is more than 23	0.21 but more than 0.03. Now write its fractional equivalent.			
'thousandths number'	It is more than 23.5	• Write a decimal fraction that is less than 0.05 but more than 0.039. Now write its			
Count back in thousandths	It is less than 23.8	fractional equivalent.			
starting at any 'thousandths number'	Now find another number with 3 decimal places and ask your friends similar questions.	Think of 5 more similar questions to ask your friend.			
Know that thousandths arise from dividing an object, quantity or number into 1000 equal parts Place fractions (thousandths) in order – ascending and descending.	 Cake Mixture A special cake weighs 8Kg (8000 grams). Half of the cake is made from flour. Three tenths of the cake is made of milk. Three thousandth of the cake is made from a special spice. How much flour was there? How much special spice was there? Now make up similar problems involving mixtures. 	What do you notice? 1/100 of 100 = 1 1/1000 of 100 = 0.1 2/100 of 100 = 2 2/1000 of 100 = 0.2 How can you use this to work out: 6/100 of 200 6/1000 of 200?			

Autumn 1: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value: Decimals: Count up and down in thousandths; recognise that thousandths arise from dividing an object into 1000 equal parts and in dividing numbers or quantities by 1000.	Me	My Teacher
Can you work out how many thousandths there are in any number to include ones, tenths, hundredths and thousandths?		
Can you work out how many thousandths there are in any ones value?		
Can you work out how many thousandths there are in any given tenth value?		
Can you work out how many thousandths there are in any given hundredth value?		
Do you know that 10 thousandths are equivalent to one hundredth?		
Do you know that 100 thousandths are equivalent to one tenth?		
Do you know that 1000 thousandths are equivalent to one whole?		

Year 5: Autumn 1

Week 3: Addition & Subtraction

Add and subtract numbers mentally with increasingly large numbers.

Autumn 1: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	me Autumn 1: V		Week 3			
Objective: Addition & Subtraction	Add and sub	Add and subtract numbers mentally with increasingly large numbers.				
Add	d these rapio	dly		Subtract these	e rapidly	
60,500 + 10,000)			56,910 - 10,000		
89,478 + 10,000)			129,035 - 10,000		
234,812 + 100,000				472,912 - 100,000		
602,825 + 100,000				629,012 - 100,000		
328,901 + 10,000				670,135 - 100,000		
792,013 + 10,00	00			824,012 - 100,000		
1,203,467 + 1,0	00,000			1,352,978 - 1,000,000		
7,982,479 + 1,0	00,000			8,482,912 - 1,000,000		

Autumn 1: Week 3: Practice and Consolidation

Addition & Subtraction: Add and subtract numbers mentally with increasingly large numbers.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:	
 Mentally: Add any two 2- digit numbers Subtract any 2- digit number from any other greater 2-digit number Subtract any 2- digit number from 	 This unit is about improving pupils' rapid recall. Much of the learning is about using a timer to see how pupils can 	Complete the pattern: + $5 = 14$ + $50 = 140$ + $500 = 1400$ + $5000 = 14000$	What do you notice? Explain this to a partner. Create a similar pattern with subtraction.
 any 3-digit number Add any 2-digit and any 3-digit number Subtract any 2- digit number from 	 improve their mental agility. Many of the examples here will be similar to the activities that pupils 	Look at these patterns and conti31 + 69150 + 85041 + 59250 + 75051 + 49350 + 65061 + 39450 + 550	nue them: 1250 + 8750 1275 + 8725 1300 + 8700 1325 + 8675
 any 4-digit number Add together two 3-digit numbers Subtract a 3-digit number from a greater 3-digit number Add any 1000s 	 activities that pupils have been used to during the 3 x 15 minutes basic number sessions. This part will be linked to such 	Now look at these patterns and a1250 - 25012000 - 10001200 - 30011500 - 15001150 - 35011000 - 20001100 - 40010500 - 2500	continue them: 120000 - 10000 115000 - 15000 110000 - 20000 105000 - 25000
 Number to any 4 or 5-digit number Subtract any 1000s number from a greater 5-digit number 	exercises as one minute testing, etc.	Bonding in 100s to 1000 400 + 600 = 1000 What are the others? Also bonding in 1000s to 10000	Bonding in 10000s to 100,000 30000 + 70000 = 100000 What are the others? Also bonding in 100,000 to 1,000,000.

Autumn 1: Week 3: Mastering this Objective - Deeper Understanding

Addition & Subtraction: Add and subtract numbers mentally with increasingly large numbers.

Teaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:			
Mentally: > Add any two 2-	Sequence Checker	Improving your mental subtraction		
 digit numbers Subtract any 2- digit number from any other greater 2-digit number 	177,000, 187,000, 197,000, 217,000 What is wrong with this sequence of numbers?	Take 129 from 347 $129 \longrightarrow 200 = 71$ $200 \longrightarrow 300 = 100$		
 Subtract any 2- digit number from any 3-digit number 	238,000, 228,000, 218,000, 208,000, 188,000 What is wrong with this sequence of	$300 \longrightarrow 347 = 47$ Answer = 218		
 Add any 2-digit and any 3-digit number 	numbers?	Use this method to calculate the following:		
 Subtract any 2- digit number from any 4-digit number Add together two 	456,000, 455,500, 455,000, 454,500, 453,000 What is wrong with this sequence of numbers?	521 - 276;712 - 413;926 - 382691 - 367;827 - 672;520 - 167		
 3-digit numbers Subtract a 3-digit number from a 	Take 500 away from each of these numbers:	Mental agility involving money Paying amounts with a £50 note:		
greater 3-digit number > Add any 1000s	1,234,893439,265812,256768,092845,289723,127	How quickly can you respond when asked to give change?		
 number to any 4 or 5-digit number Subtract any 1000s number from a 	Take 5000 away from each of these numbers:	How much change will you have from a $\pounds 50$ if you were asked to pay:		
greater 5-digit number	1,346, 9892,346, 2353,125,8902,562,1235,763,1247.090,123	£21.98; £14.92 £17.93 £16.32 £16.88 £19.34 £34.56 £14.87 £17.45 £17.77		

Autumn 1: Week 3: Working at greater depth

Addition & Subtraction: Add and subtract numbers mentally with increasingly large numbers.

Teaching	Activities for pupils working at greater depth:			
Sequence				
Mentally: > Add any two 2- digit numbers	Paying multiple of Work these out n check:		nd then	What are the missing digits? Estimate first and then check.
 Subtract any 2- digit number from any other greater 	Pay with one or tickets. How muc	ch change wil	l l receive?	123,908 + 125,0 6 = 248,984
 2-digit number Subtract any 2- digit number from 	 2 adult tickets @ £13.50 and 2 children's tickets @£9.50 			256, 56 + 125,896 = 382,452 72,901 + 262,980 = 1,035,881
 Add any 2-digit and any 3-digit 	 4 adult tickets tickets @ £7.99 4 adults tickets)	s children s	1,892,009 - 435, 76 = 1,456,233
 Number Subtract any 2- digit number from 	 6 children's tickets @ £7.95 			3,901,834 - 1, 34,999 = 1,966,835
 Add together two 3-digit numbers 	Minus 1500 Take 1,500 away numbers:	r from each of	these	Card Fun Have two sets of cards:
 Subtract a 3-digit number from a greater 3-digit 	Mentally first and	then check		Set A has numbers of multiples of 100; 1,000; 10,000 and 100,000 on them.
 Number Add any 1000s number to any 4 	1,234,893 768,092	439,265 845,289	812,256 723,127	Set B has numbers in their millions. The idea is to show one of the Set B cards and
 or 5-digit number Subtract any 1000s number from a greater 5-digit 	Take 50,000 awa numbers:	y from each c	of these	then either add or subtract the next card from Set A.
number	1,346, 989 2,562,123	2,346, 235 5,763,124	3,125,890 7.090,123	Pupils play this in 2s or 4s and time each other to see how many correct answers they get within a given time frame.

Autumn 1: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

	& Subtraction: Add and subtract numbers mentally with gly large numbers.	Ме	My Teacher
ทเ	Have you established strategies for dealing with larger numbers, including breaking them up where it is appropriate to do so?		
	Can you add or subtract any 1000s number to a 4 or 5 digit number?		
	Have you developed a strategy for adding and subtracting numbers which go through the multiples of 10 line, eg. 123 – 97 or 236 + 197?		
	Can you mentally subtract a 2-digit number from a 3- digit number rapidly?		
	Can you mentally subtract any 2-digit number from a greater 2-digit number rapidly?		
	Can you mentally add any 2, 2-digit numbers rapidly?		

Year 5: Autumn 1

Week 4: Geometry: Angles

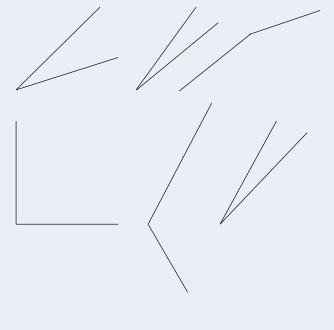
Know angles are measured in degrees; estimate & compare acute, obtuse & reflex angles.

Identify:

- Angles at a point on a straight line & half a turn (total 180°)
- Angles at a point & one whole turn (total 360°)
- Other multiples of 90°

Draw given angles, & measure them in degrees

Autumn 1: Week 4: Pre-Learning Task


The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Autumn 1: Week 4

Objective: Know angles are measured in degrees; estimate & compare acute, obtuse & reflex angles. Geometry: Angles at a point on a straight line & ½ a turn (total 180°) Angles Angles at a point & one whole turn (total 360°) Other multiples of 90° Draw given angles, & measure them in degrees

Mark acute angles with an A; Obtuse angles with a O and a right angle with a R:

Name

Draw an acute; obtuse and a right angle in the space below:

Autumn 1: Week 4: Practice and Consolidation

Geometry: Angles: Know angles are measured in degrees; estimate & compare acute, obtuse & reflex angles. Identify: Angles at a point on a straight line & ½ a turn (total 180°); Angles at a point & one whole turn (total 360°); Other multiples of 90°; Draw given angles, & measure them in degrees

	aching quence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
AAA	Know that 90° is equivalent to a quarter turn Know that 180° is equivalent to a half turn Know that 270° is	 Ensure that pupils are secure with the idea of angles and turns, for example a quarter turn is measured as 90°. Know that angles are 	Looking around the classroom; the inside and outside areas of your school and possibly around the immediate area outside your school, take photographs of any right angles you see and put together in a small booklet showing them and their location but also a brief explanation of why a right angle is needed at that point.
A	equivalent to a three-quarter turn Know that 360° is equivalent to a full turn Estimate,	 measured precisely using a protractor. Know that it is easy to classify angles into acute; obtuse and reflex as well as using 	Draw 3 acute angles and then use a protractor to measure them to the nearest degree. Draw 3 obtuse angles and then use a protractor to measure them to the nearest degree. Why is it helpful for protractors to be transparent?
	compare and measure angles in drawings, identifying acute, obtuse and reflex angles Able to use a protractor to measure angles Able to use a protractor to draw angles	 the term right angle and a straight line. Re-emphasise the idea of an angle being something opening from a given point. Introduce pupils to the term protractor and model how to use one. 	First estimate and then measure the following angles:

Autumn 1: Week 4: Mastering this Objective – Deeper Understanding

Geometry: Angles: Know angles are measured in degrees; estimate & compare acute, obtuse & reflex angles. Identify: Angles at a point on a straight line & 1/2 a turn (total 180°); Angles at a point & one whole turn (total 360°); Other multiples of 90°; Draw given angles, & measure them in degrees

	aching quence	If pupils have mastered this objective the activities independently:	hey will be able to complete these
	Know that 90° is equivalent to quarter turn	Think of the angle created between the hands of a clock:	Without checking, is this angle likely to be 60°?
>	Know that 180° is equivalent to half turn	Is the angle an acute; obtuse or a right angle at these times:	
	Know that 270° is equivalent to three-quarter turn	4 o'clock;ten past threetwenty past sixquarter past twelve9 o'clockfive past seven	Explain your reasoning before checking the angle. Then without using a protractor draw
A	Know that 360° is equivalent to full turn Estimate,	Now give another 3 examples of when the hands make an acute; obtuse or a right angle.	an angle of 60° and then check how accurate you have been. You should aim for accuracy within 5°
	compare and measure angles in drawings, identifying	Draw 3 reflex angles and record their angles in degrees.	Estimate the following angles (x) and then check them:
	acute, obtuse and reflex angles Able to use a	On the intersecting lines below, mark at least one reflex angle.	x
	protractor to measure angles		<u>x</u> <u>x</u>
	Able to use a protractor to draw angles		You should aim to be within 5°.
		(c) Focus Education (UK) Ltd	28

Autumn 1: Week 4: Working at greater depth

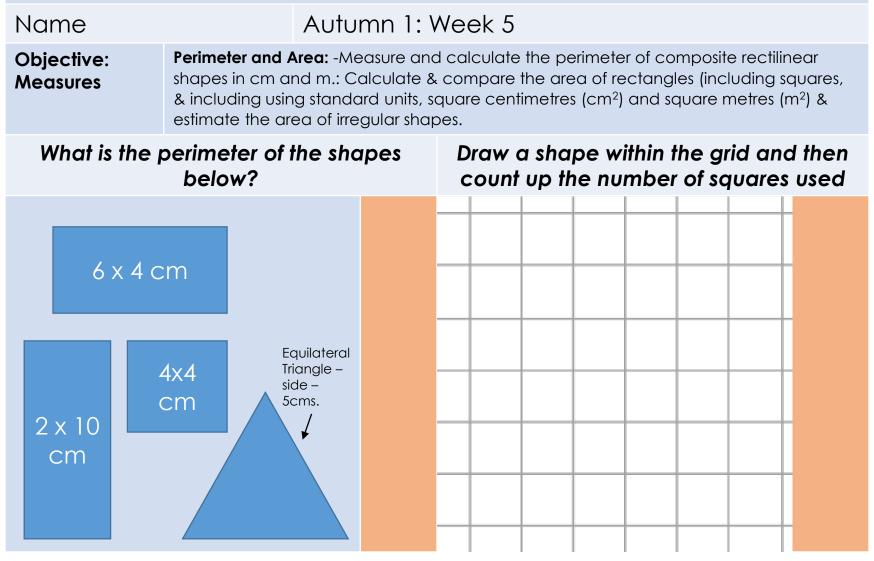
Geometry: Angles: Know angles are measured in degrees; estimate & compare acute, obtuse & reflex angles. Identify: Angles at a point on a straight line & ½ a turn (total 180°); Angles at a point & one whole turn (total 360°); Other multiples of 90°; Draw given angles, & measure them in degrees

	aching quence	Activities for populs working at greater depth.			
>	Know that 90° is equivalent to quarter turn	Draw the capital letter ' A ' where the angle at the top is 30° .	Look carefully at the number:		
	Know that 180° is equivalent to half turn	Draw the capital letter ' K ', ensuring that the angle in the centre is 45° .	Estimate what the angle should be and then check to see if you could draw a '4'		
	Know that 270° is equivalent to three-quarter	Draw the capital letter ' \mathbf{V} ' ensuring that the angle at the bottom is 35°.	with the angle you estimated. Now look at the number:		
>	turn Know that 360° is equivalent to full turn	Draw the capital letter ' X ' making sure that the intersecting angles are 45°.	Estimate the angle and then attempt to draw the number 7 with this angle.		
	Estimate, compare and measure angles in drawings identifying acute, obtuse	What's the time Mr Wolf? The minute and hour hands are open at an angle of 90°. The hour hand is between 4 and 6. Think of at least two possible times it could	30° 5m		
A A	and reflex angles Able to use a protractor to measure angles Able to use a protractor to draw angles	 be? The angle between the two hands is 60° and the minute hand is at 7. Think of at least two possible times it could be. Now make up similar problems for others to solve 	The sun forms an angle of 30° to the Earth as shown above. How long will the shadow of a lamp-post 5m high be (to the nearest 5 cm)? Start by creating a diagram.		

Autumn 1: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry: Angles: Know angles are measured in degrees; estimate & compare acute, obtuse & reflex angles. Identify: Angles at a point on a straight line & half a turn (total 180°); Angles at a point & one whole turn (total 360°); Other multiples of 90°; Draw given angles, & measure them in degrees	Me	My Teacher
Can you draw a given angle and measure them in degrees (°)?		
Can you estimate an angle and then check it?		
Do you know that you use a protractor to measure angles?		
Do you know that angles are measured in degrees which has a symbol like this (°)?		
Can you identify a reflex angle?		
Can you identify an obtuse angle?		
Can you identify an acute angle?		


Year 5: Autumn 1

Week 5: Measures: Perimeter and Area

-Measure and calculate the perimeter of composite rectilinear shapes in cm and m. - Calculate & compare the area of rectangles (including squares), & including using standard units, square centimetres (cm²) and square metres (m²) & estimate the area of irregular shapes.

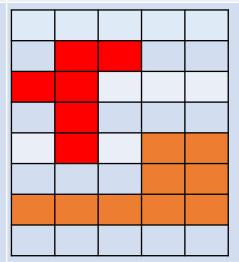
Autumn 1: Week 5: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Autumn 1: Week 5: Practice and Consolidation

Measures: Perimeter and Area: -Measure and calculate the perimeter of composite rectilinear shapes in cm and m.: Calculate & compare the area of rectangles (including squares, & including using standard units, square centimetres (cm²) and square metres (m²) & estimate the area of irregular shapes.

Teaching	
Sequence	


Oral and Mental Activities Examples:

Pencil and Paper Activities Examples:

- Calculate the perimeter of a range of shapes, including composite shapes by dividing into smaller shapes
- Know the units of measure for calculating area and how to represent (cm²/m²)
- Explain how to calculate the area of a shape using a formula
- Calculate area using formula
- Calculate the area of composite shapes by dividing into smaller shapes
- Calculate the area of larger spaces using m²

Remind pupils of the
Year 4 learning in
relation to perimeter.
Ladres als sans dia a se adda se

- Introduce the notion of working to centimetre squared paper and the quick way of measuring area.
- Use examples of desk tops to emphasise the difference between perimeter and area.
- Ensure pupils are confident of their use of the symbol ² in relation to area.
- Talk about the different ways area is used in everyday life, eg, buying carpet or floor covering.
- At this stage concentrate on either cm² or m².

If the squares on this paper are 1 cm² what is the perimeter and area of the shaded shapes?

Using cm squared paper create more shapes for your friend to work out the perimeter and area.

If half the squared paper on the left was shaded, what would be the area shaded?

If a field measures 100m x 50m, what is their perimeter and area? Look at the diagram below showing two adjoining fields.

120 x 40m

Both fields are measured in metres. Find the perimeter of the

adjoining fields and also find its area.

Autumn 1: Week 5: Mastering this Objective – Deeper Understanding

Measures: Perimeter and Area: -Measure and calculate the perimeter of composite rectilinear shapes in cm and m.: Calculate & compare the area of rectangles (including squares, & including using standard units, square centimetres (cm²) and square metres (m²) & estimate the area of irregular shapes.

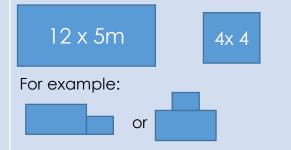
Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

•		
 Calculate the perimeter of a range of shapes, including composite shapes by dividing into smaller shapes Know the units of measure for calculating area and how to represent (cm²/m²) Explain how to calculate the area of a shape using a formula Calculate area using formula Calculate the area of composite shapes by dividing into smaller shapes Calculate the area of a composite shapes by dividing into smaller shapes Calculate the area of larger spaces using m² 		Use centimetre squared paper to create the following rectangles: 6 x 4 cm 10 x 4 cm 8 x5 cm Now for each of the above create another shape which has the same area and separately a shape which has the same perimeter. Will the shape for area always be the same as the shape for perimeter? Explain your thinking.
	Image: Constraint of the same area. Now find the perimeter of the 4x4 square and draw 2 other shapes with the same perimeter.	Explain your thinking. Using centimetre squared paper. Make up 4 shapes that have 16 sq. cm The shapes should not just be rectangles or squares. Work out the perimeter of each of the shapes you have made and put a fence around the perimeter of each. The fence costs £10 per metre. Which is the most and least expensive to surround with fencing?

Autumn 1: Week 5: Working at greater depth

Measures: Perimeter and Area: -Measure and calculate the perimeter of composite rectilinear shapes in cm and m. Calculate & compare the area of rectangles (including squares, & including using standard units, square centimetres (cm²) and square metres (m²) & estimate the area of irregular shapes.


Teaching Sequence

Calculate the perimeter of a range of shapes, including composite shapes by dividing into smaller shapes

- Know the units of measure for calculating area and how to represent (cm²/m²)
- Explain how to calculate the area of a shape using a formula
- Calculate area using formula
- Calculate the area of composite shapes by dividing into smaller shapes
- Calculate the area of larger spaces using m²

Activities for pupils working at greater depth:

Put these two shapes together to create different shapes:

Will their perimeter and area always be the same? Explain your reasoning.

Enclosing a Field A farmer wants to create an enclosed field with an area of 100 sq. metres. When he has decided on his shape he will have to buy fencing around the perimeter. The fencing will cost £6 per metre.

He wants to create the new enclosed field so that the fence is going to be as cheap as possible.

What should the dimensions of the enclosed field be? Now work out the cost of the fence. You are dealing with whole metres only.

Garden

A new garden is about to be grassed. The dimensions of the garden are 12 x 8 metres.

The gardener wants to put a vegetable plot of 4×3 metres and a shed measuring 3×2 metres in the garden.

If the rest of the garden is covered in grass and grass costs £12 per sq metre, how much will the grass cost altogether?

Playground Design

Design your own school playground. The dimensions of the space available to you are 60 x 40 metres.

You have to include the following:

- Small enclosed football area
- Quiet sitting area
- Trim Trail

Put together a design and think of how best to enclose the football and the quiet area. Costs have to be considered. Enclosure fences at £15 per metre; Flooring for football at £45 per sq metre. Present your design including dimensions and costs.

Autumn 1: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Measures: Perimeter and Area: -Measure and calculate the perimeter of composite rectilinear shapes in cm and m. Calculate & compare the area of rectangles (including squares, & including using standard units, square centimetres (cm ²) and square metres (m ²) & estimate the area of irregular shape	Me es.	My Teacher
Can you use information about calculating the area of a square or rectangle to work out the area of irregular shapes that can be divide up into squares and rectangles?	ed 7	
Can you use information about calculating the area of a square or rectangle to work out the area of irregular shapes that can be divided up into squares and rectangles?	r	
Can you use information about calculating the area of a square rectangle to work out the area of irregular shapes that can be divided up into squares and rectangles?	or	
Do you know that the area of a square or a rectangle is measured in cm ² or m ² ?		
Can you create a shape that has the same area as a shape you have already drawn on cm. squared paper?		
Can you work out the area of given shapes using cm. squar paper?	ed	
Can you calculate the perimeter of a composite shape, given the dimensions?		
Can you calculate the perimeter of a rectangle or square	÷5	

Year 5: Autumn 1

Week 6: Addition & Subtraction

Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction).

Autumn 1: Week 6: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Autumn 1: Week 6							
Objective: Addition & Subtraction	ddition & formal writte					nbers with mo mnar additior	•	•	sing
16448 <u>12255+</u>	113 <u>141</u>	25 <u>23+</u>	1046 <u>2025</u>			32876 <u>10323-</u>	15689 <u>21643-</u>	78592 <u>35869-</u>	
34571 <u>24259+</u>	756 238 <u>439</u>	-	9583 7327 <u>5665</u>	1		42879 <u>34588-</u>	53653 <u>24676-</u>	84932 <u>46737-</u>	

Autumn 1: Week 6: Practice and Consolidation: Part 1 (Addition)

Addition & Subtraction: Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction).

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
 Add numbers with up to 5- digits with no exchanging Add numbers with up to 5- digits with exchanging Subtract 	 Remind pupils of the formal methods of adding and subtracting 4- digit numbers. Concentrate on exchanging between columns. Gain better levels 	Add numbers with more than 4 digits using partitioning to support understanding: $23671 (20000 + 3000 + 600 + 70 + 1) \\ \underline{43872} + (40000 + 3000 + 800 + 70 + 2) \\ 60000 + 6000 + 1400 + 140 + 3 \\ 60000 + 6000 + 1000 + 400 + 100 + 40 + 3 \\ 60000 + 7000 + 500 + 40 + 3 \\ 67543 \end{cases}$
up to 5-digits with no exchanging	th no partitioning to help	Using the above method add these: 34671 25278 54123 94721 67128+ 41693+ 82941+ 41839+
 Subtract numbers with up to 5-digits with Subtract ensure th are prov time to p 	understanding but ensure that pupils are provided with time to practise	Now using columnar addition complete the following: 65122 461143 912301 901245 22316+ 426815+ 245178+ 637924+
over anging	the columnar methods.	56124 92567 245012 672014 24685+ 13532+ 434999+ 562771+

Autumn 1: Week 6: Practice and Consolidation: Part 2 (Subtraction)

Addition & Subtraction: Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction).

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Pc Examples:	aper Activities	5		
 Add numbers with up to 5- digits with no exchanging Add numbers 	with up to 5- digits with no exchanging subtracting 4-digit	76329 (70,000 + 6000 +300 + 20 + 9) (70,000+6000+200+120+9) <u>24263</u> -(20,000 + 4000 +200 + 60 + 3) (20,000+4000+200+ 60+3) 50,000+2000+0 +60 +6 52066				
digits with exchanging ➤ Subtract		Using the above 34671 <u>22128</u> -	e method subtro 25278 <u>21193</u> -	54123	94721 <u>41239</u> -	
 up to 5-digits with no exchanging Subtract numbers with 		Now using colu 65122 <u>22316</u> -	mnar subtractic 461143 <u>426815</u> -	on complete ti 912301 <u>245178</u> -	he following: 901245 <u>637924</u> -	
with		56124 <u>24685</u> -	92567 <u>13532</u> -	245012 <u>434999</u> -	672014 <u>562771</u> -	

Autumn 1: Week 6: Mastering this Objective – Deeper Understanding

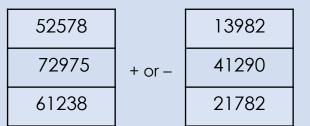
Addition & Subtraction: Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction).

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

6	3289
41,864	
following calculation 41,864 + 21,425 = 63 21,425 + 41,864 = 63 63,289 - 21,425 = 41 63,289 - 41,864 = 21 Now work out the models and the	ons: 3,289 3,289 ,864 ,425 nissing nu en set ou
84	4,932
61,364	
27,884	
	41,864 The bar model prov following calculatio 41,864 + 21,425 = 63 21,425 + 41,864 = 63 63,289 - 21,425 = 41 63,289 - 41,864 = 21 Now work out the m bar models and the calculations for eace

63289			Melchester Rovers is a very popular football team. At their first match 67,982 watched				
1,864	21,425		them play and at the second match 1236 more people watched them play.				
nodel provides you with the calculations: 21,425 = 63,289 41,864 = 63,289 21,425 = 41,864 41,864 = 21,425			How many people watched them play their first two matches? Set out your calculation using columnar addition. Stan says that 250,000 watched them play their first 2 matches. How far short were they of this figure?				
c out the missing numbers on these els and then set out the four ons for each:			Two famous groups sell their music through downloads. U True have sold 145,925 of their latest song during April and Y Cue have sold 378,912 in				
84,	932		April. How many more downloads have Y Cue sold in April?				
1,364			When you add both groups' April sales together do they come to more or less than				
			500,000? Y Cue sold half as much again during May				
7,884 41,885			and U True sold the same amount again in May. What is their total sales for April and May?				
	(c) Focus Education (UF	<) Ltd	41				


Autumn 1: Week 6: Working at greater depth

Addition & Subtraction: Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction).

Teaching Sequence

Add numbers with up to 5digits with no exchanging

- Add numbers with up to 5digits with exchanging
- Subtract numbers with up to 5-digits with no exchanging
- Subtract numbers with up to 5-digits with exchanging

Activities for pupils working at greater depth:

Add each of the numbers on the left to each of the numbers on the right (9 in all). Now subtract each of the numbers on the right from the numbers on the left.

+ 14675 = 6 724

Which numbers go in the boxes? What different answers are there?

Now try:

Set each calculation out as columnar addition

American Cities

The table below shows the changes that have happened to the population of large American cities.

Cities	Present Population (m)	Population in 1990 (m)
New York	8,340,000	7,320,000
Los Angeles	3,860,000	3,490,000
Chicago	2,710,000	2,780,000
Houston	2,160,000	1,630,000
Philadelphia	1,550,000	1,580,000
Phoenix	1,490,000	980,000

Work out whether Los Angeles or Houston has grown more since 1990. Show your workings.

Two of the cities' populations have become smaller and four cities' populations have grown. Work out by how much the total populations of each of the six cities have grown or become smaller since 1990. Show all your workings.

Autumn 1: Week 6: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Addition & Subtraction: Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction).	Me	My Teacher
Can you subtract a 5-digit number from another using column subtraction which requires exchange between the units, tens, hundreds or thousands (or any two of these)?		
Can you subtract a 5-digit number from another using column subtraction which requires no exchange between the units, tens, hundreds or thousands?		
Can you add 3 numbers with 5-digits using column addition where the units, tens or hundreds make more than 10?		
Can you add 2 numbers with 5-digits together using column addition, where the units, tens or hundreds when added make more than 10?		
Can you add 2 numbers with 5-digits together using column addition without exchange between units and tens?		

YEAR 5 : AUTUMN 2: Overview and Teaching Steps						
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	
1 Multiplication & Division - Factors	2 Multiplication & Division	1 Fractions	3 Multiplication & Division	1 Statistics	Consolidate and Assess	
Identify multiples and factors including finding all factor pairs of a number and common factors of two numbers.	 -Multiply and divide numbers mentally drawing upon known facts. -Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers -Establish whether a number up to 100 is prime and recall prime numbers up to 19. > Use mental 	Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. Read and write decimal numbers as fractions, e.g. 0.71 = 71/100. ➤ Identify	Multiply numbers up to 4- digits by a 1-digit or 2-digit number using a formal written method, including long multiplication for 2- digit numbers.	Complete, read and interpret information in: - tables, including timetables	Start this week by revising the learning covered in the first half of the Autumn term so as to ensure pupils are fluent	
of all numbers up to 100. Know all factors that make up all numbers to 100.	 applications to multiply numbers making use of multiplication tables up to 12x12. Use mental applications to divide numbers making use of multiplication tables up to 12x12. Describe what a prime number is Describe what a prime factor is Describe what a composite number is Explain how to work out whether a number is a prime number. Recall all prime numbers to 19. 	 equivalent fractions for ?/3 Identify equivalent fractions for ?/4 Identify equivalent fractions for ?/10 Identify equivalent fractions for ?/100 Write 0.5; 0.25; 0.1 as fractions Write any decimal with 1 decimal place as a fraction Write any decimal with 2 decimal places as a fraction 	 number with up to 3-digits by a single digit number. Multiply any number with up to 4-digits by any single number. Multiply any number with up to 3-digits by a 2- digit number. Multiply any number with up to 4-digits by a 2- digit number. 	 construct a table from a set of given information Know how to construct a table using only the relevant information Read a table to answer questions Read a timetable to answer questions Construct own table and timetable making decision about labelling 	and secure with their basic skills. Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in first half of the Autumn term. Analyse the results and use information to help focus the intervention and pre-teaching sessions, as needed, for the following half term.	

Year 5: Autumn 2

Week 1: Multiplication & Division

Identify multiples and factors including finding all factor pairs of a number and common factors of two numbers.

Autumn 2: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	ŀ	Autumn 2:	Week 1				
Objective: Multiplication & Division	· · ·	Identify multiples and factors including finding all factor pairs of a number and common factors of two numbers.					
What are the factors of the following numbers?Write down 2 multiples of the follow numbers.					owing		
24			5	and			
16			7	and			
35			9	and			
36			11	and			
80			13	and			
50			8	and			
66			16	and			
77			20	and			

Autumn 2: Week 1: Practice and Consolidation

Multiplication & Division: Identify multiples and factors including finding all factor pairs of a number and common factors of two numbers.

	aching quence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
 Identify multiples of all numbers up to 100. Know all factors that make up all numbers to 100. 	 Start by ensuring pupils are confident and secure with their times tables to x12. 	What are the smallest factors you can break numbers into: eg, $24 = 2 \times 2 \times 2 \times 3$ Now set out the smallest factors for: 36 49 27 45 108 88 96 120 60 75 90 112	
	all numbers to	Pupils should be able to answer a times table question out of order and also deal	Play a game of matching one set of cards to another: One set of cards to have multiple as in times table, eg, 6×8 ; the other set to have factors set out $(3 \times 2) \times (2 \times 2 \times 2)$ Pupils to be given starting point for their game but then move on to create more interesting games.
		 with the inverse. Take any multiplication example from the times table, ie, 6 x 8 = 48 and break down the factors, ie, 3 x 2 x 2 x 2 x 2 = 48 	What are the following numbers multiples of: 16 36 45 99 110 100 25 70 20 120 90 63 50
			Show the common factors that the following pair of numbers have: 36 and 24; 25 and 10; 16 and 10; 84 and 14; 81 and 27
•		 Pupils need to be confident about all factors to 100. 	Make a table showing all numbers between 1 and 20 on the left and their factors on the right:NoFactors11 x 122 x 1

Autumn 2: Week 1: Mastering this Objective – Deeper Understanding

Multiplication & Division: Identify multiples and factors including finding all factor pairs of a number and common factors of two numbers.

Teaching Sequence	If pupils have mastered this objective the activities independently:	hey will be able to complete these
 Identify multiples of all numbers up to 100. Know all factors that make up all numbers to 100. 	Complete these patterns: $3 \times 7 = 6 \times 8 =$ $3 \times 70 = 6 \times 80 =$ $3 \times 700 = 6 \times 800 =$ $3 \times 7,000 = 6 \times 8,000 =$ $6 \times 6 = 8 \times 9 =$ $6 \times 60 = 8 \times 90 =$ $6 \times 600 = 8 \times 900 =$ $6 \times 6,000 = 8 \times 9,000 =$	Multiples and factors 8 is a multiple of 4 and a factor of 16 is a multiple of 3 and a factor of 12 10 is a multiple of and a factor of 20 is a multiple of and a factor of 60 14 is a multiple of 7 and a factor of 14 is a multiple of 2 and a factor of 24 Make up some more for your friend to solve.
	48 2 3 Multiplication pyramid. What are the rules? Work this one out and then create another of your own.	When considering the smallest factors that you can break numbers into, 24 has 4 factors, ie 24 = 2 x 2 x 2 x 3. Which of the following pairs have most factors?

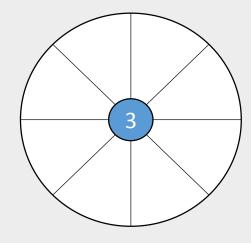
Autumn 2: Week 1: Working at greater depth

Multiplication & Division: Identify multiples and factors including finding all factor pairs of a number and common factors of two numbers.

Teaching Sequence

Activities for pupils working at greater depth:

- Identify multiples of all numbers up to 100.
- Know all factors that make up all numbers to 100.


Multiplication Pyramid

Put in the numbers 1 to 4 in any order on the bottom row.

What are all the possible numbers you could get at the top of the pyramid?

Is the number on the top larger if you put the highest numbers on the outside or inside on the bottom row?

Now create pyramids with different combinations from 1 to 5 along the bottom row and see what number you will get on the top. Look at the following circle. The number in the centre is a factor and you need to place as many multiples of this number in the segments of the circle.

Now do the same with the following numbers in the centre of the segment: 2; 5; 7; and 11

Find the missing numbers: $\div 8 =$

Autumn 2: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Identify multiples and factors including finding all factor pairs of a number and common factors of two numbers.	Ме	My Teacher
Can you recognise common factors in any pair of numbers?		
Can you name at least 2 multiples of any given number up to 20?		
Do you recognise numbers that only have 1 and themselves as factors?		
Can you find the smallest factors of any number up to 100?		
Can you find the factors of any number up to 20?		
Do you understand the term multiple?		
Do you understand the term factor?		

Year 5: Autumn 2

Week 2: Multiplication & Division

-Multiply and divide numbers mentally drawing upon known facts. -Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers -Establish whether a number up to 100 is prime and recall prime numbers up to 19.

Autumn 2: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		A	vtu	mn 2: V	Veek 2			
Objective: Multiplication & Division	-Know and u prime) numb	use the pers	de numbers mentally drawing upon known facts. ne vocabulary of prime numbers, prime factors and composite (non- er a number up to 100 is prime and recall prime numbers up to 19.					
Circle the prime numbers in this	<u> </u>	13 2	25		Complete these	very rapidly:		
set of numbers		7 9)		6 x 7			
What are the following numbers		he			14 ÷ 2			
24					8 x 9			
36					72 ÷ 8			
48					12 x 6			
60					90 ÷ 10			
72					45 ÷ 5			
84					8 x 7			

Autumn 2: Week 2: Practice and Consolidation

Multiplication & Division: -Multiply and divide numbers mentally drawing upon known facts. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
 Use mental applications to multiply numbers making use of multiplication tables up to 12x12. 	 Remind pupils of the term factor and what it stands for. Introduce the concept of a prime number and help 	Multiply 2-digit numbers by x2 to x12, using the following method: $16 \times 7 = (10 \times 7 = 70) + (6 \times 7 = 42) = 70 + 42 = 112$ 18×8 15×7 26×9 25×5 24×8 32×8 27×6 23×9
 Use mental applications to divide numbers making use of multiplication tables up to 12x12. Describe what a 	 pupils to establish full understanding of the term. Use the term composite as it relates to numbers that are not prime 	Divide 3-digit numbers by x2 to x12, using the following method: $147 \div 7 = (140 \div 7 = 20) + (7 \div 7 = 1) = 21$ $128 \div 8$ $225 \div 9$ $138 \div 6$ $119 \div 7$ $232 \div 8$ $234 \div 9$ $210 \div 6$ $287 \div 7$
 prime number is Describe what a prime factor is Describe what a composite 	numbers. • Check that pupils know all prime numbers to 19 by	Describe a prime number. List all prime numbers to 20. Describe a composite number. List 5 composite numbers between 20 and 50.
 number is Explain how to work out whether a number is a prime number. Recall all prime numbers to 19. 	chanting them regularly alongside their times tables.	If $7 \times 6 = 42$, what is 70×6 ?If $8 \times 9 = 72$, what is 80×9 ?If $4 \times 8 = 32$, what is 40×8 ?If $7 \times 7 = 49$, what is 70×7 ?If $9 \times 3 = 27$, what is 90×3 ?If $8 \times 9 = 72$, what is 80×7 ?If $7 \times 6 = 42$, what is 700×6 ?If $8 \times 9 = 72$, what is 80×5 ?If $4 \times 8 = 32$, what is 400×8 ?If $8 \times 9 = 72$, what is 800×9 ?If $9 \times 3 = 27$, what is 900×3 ?If $8 \times 5 = 40$, what is 700×7 ?If $9 \times 3 = 27$, what is 900×3 ?If $8 \times 5 = 40$, what is 800×5 ?

Autumn 2: Week 2: Mastering this Objective – Deeper Understanding

Multiplication & Division: -Multiply and divide numbers mentally drawing upon known facts. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

>	applications to multiply numbers making use of multiplication tables up to 12x12.	when counting to 100.		Make a list of all the prime numbers to 50. Make a table as shown and show at least two multiples of the prime numbers.						
>		Create a grid with numbers on the		Α	В	С	D	E	F	
>	 prime number is Describe what a prime factor is 	coordinates. In each square put a multiplication problem which has to derive from x2 to the x12	6	60 X7						
>		tables, eg, 60×7 or 400×5 or $450 \div 9$. Work in groups of 4, each in turn has 1	5			700 ÷ 7				
>	number is	minute to answer as many as they can. Another partner gives the coordinates and	4				400 x 5			
	a number is a prime number.	the idea is to respond as rapidly as possible. Each of the group creates their own grid	3							
>		and they play on each one in turn.	2							
	101100131017.		1							

Autumn 2: Week 2: Working at greater depth

factors?

Add some additional statements.

Multiplication & Division: -Multiply and divide numbers mentally drawing upon known facts. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19.

Teaching Sequence

Activities for pupils working at greater depth:

Use mental **Board Game Missing Digits** applications to Create a board game with 10 x 10 squares. What goes in the missing space? multiply numbers In each square, put the numbers 1 to 100. making use of Use a dice with numbers 1 to 6. 2 ÷ 6 = 212 12 multiplication In turn, throw the dice and move to the tables up to 12x12. next number which has the number thrown $4 \div 7 = 212$ 14 Use mental \geq as a factor. applications to 3 ÷ 7 = 321 r 6 Take turns and the idea is to reach 100 as 22 divide numbers quickly as possible. making use of 323 x 1 = 13243Having played the game once try to make multiplication the rules more interesting but it needs to tables up to have reference to multiplication and 12x12. Describe what a division. \geq prime number is Always, Sometimes or Never Ancient Egypt ≻ Describe what a Is it always, sometimes or never true that When building a model of an Ancient Egyptian prime factor is pyramid, pupils were trying to work out how multiplying a number always makes it bigger? Describe what a ≻ composite Is it always, sometimes or never true that many bricks they would need. Each of the 4 number is prime numbers are odd? sides of the pyramid started with 15 bricks at the \succ Explain how to • Is it always, sometimes or never true that base. The row after the base would need 13 work out whether when you multiply a whole number by 9, the bricks, the row after 11 and then 2 less for each a number is a sum of its digits is also a multiple of 9? row thereafter. prime number. Is it always, sometimes or never true that a • Work out how many rows there are Recall all prime \geq square number has an even number of altogether (show your workings). numbers to 19.

• Work out how many bricks they required to complete the pyramid (Show your workings).

Autumn 2: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: -Multiply and divide numbers mentally drawing upon known facts. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19.	Me	My Teacher
Can you quickly work out multiplication facts that have derived from x2 to x12 tables, eg, 70 x 5 = 350?	<	
Can you very rapidly say what all the prime numbers to 19 are?		
Can you describe what a composite number is?		
Can you describe what a prime number is?		
Do you feel confident when dealing with the inverse of multiplication facts, eg, how many 7s in 42?		
Are you very secure and confident when answering a multiplication fact taken from the x2 to the x12 tables?		

Year 5: Autumn 2

Week 3: Fractions

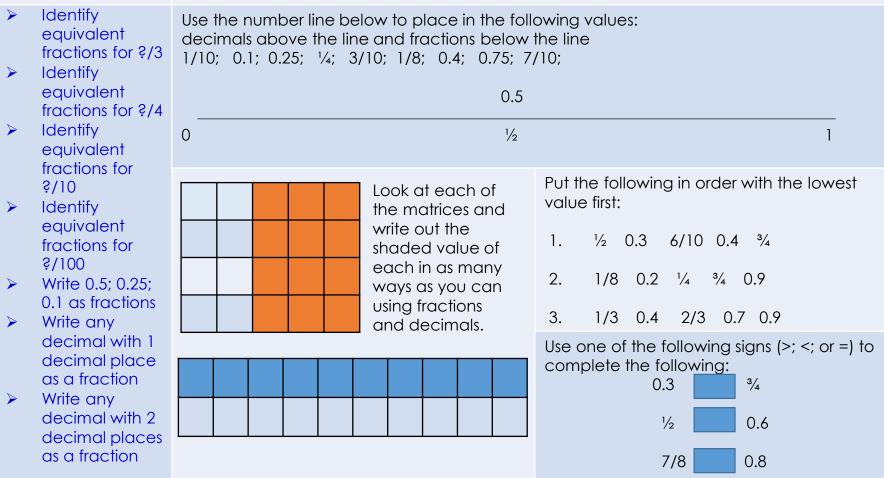
Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. Read and write decimal numbers as fractions, e.g. 0.71 = 71/100.

Autumn 2: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Autumn 2	: Week 3			
Objective: Fractions	represented visually, includ	lentify, name and write equivalent fractions of a given fraction, presented visually, including tenths and hundredths. ead and write decimal numbers as fractions, e.g. 0.71 = 71/100.			
Think of ano	ther way to write these fractions		fractions as decin fractions	nal	
<u>1</u> 4		$\frac{1}{4}$			
<u>2</u> 3		<u>3</u> 10			
<u>3</u> 4		<u>3</u> 4			
<u>7</u> 10		<u>Z</u> 10			

Autumn 2: Week 3: Practice and Consolidation


Fractions: Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. Read and write decimal numbers as fractions, e.g. 0.71 = 71/100.

	aching quence	Oral and Mental Activities Examples:	Penc Exam	il and ples:	Paper	Activ	ities					
A A A	Identify equivalent fractions for ?/3 Identify equivalent fractions for ?/4 Identify equivalent fractions for ?/10	 Use squared paper and circles to show how equivalent fractions work. Use the metre stick again with different divisions, ie, 8; 10; 5; 4; 6 		te othe $= 1/2$;				$\frac{1}{6}$	ne first egmen Vhy cai =	n six seg circle o its from n you s <u>3</u> 4 = 4/6 ^{tt}	ind thre the see ay that	ee cond. :
A	Identify equivalent fractions for ?/100 Write 0.5; 0.25; 0.1 as fractions	 and 3. Establish the relationship between thirds and sixths; quarters and 		$\frac{2}{4} = \frac{2}{4}$	<u>4</u> 8	<u>3</u> = 4	$=$ \square	<u>5</u> 10 ath∙ ard		<u>1</u> 3 5 th ; 5 th	$=$ \square	- jth
≻	Write any	eighths and tenths and fifths.	-	lete th		•		, 0	and	, , 0		
>	decimal with 1 decimal place as a fraction Write any decimal with 2 decimal places as a fraction	 Using the metre sticks look at the similarities between fractions and decimal fractions. 	1/10 0.1	0.2	3/10	0.4	1/2	0.6	7/10	0.8	9/10	1.0

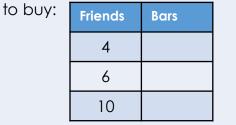
Autumn 2: Week 3: Mastering this Objective – Deeper Understanding

Fractions: Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. Read and write decimal numbers as fractions, e.g. 0.71 = 71/100.

TeachingIf pupils have mastered this objective they will be able to complete theseSequenceactivities independently:

Autumn 2: Week 3: Working at greater depth

Fractions: Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. Read and write decimal numbers as fractions, e.g. 0.71 = 71/100.


Activities for pupils working at greater depth:

Teaching Sequence

- Identify equivalent fractions for ?/3
- Identify equivalent fractions for ?/4
- Identify equivalent fractions for ?/10
- Identify equivalent fractions for ?/100
- Write 0.5; 0.25;
 0.1 as fractions
- Write any decimal with 1 decimal place as a fraction
- Write any decimal with 2 decimal places as a fraction

			• •
3	Which of pairs is cl	these oser to 1?	Answer
9	0.9	7/10	
4	7/8	19/24	
	0.2	1/4	
	7/9	17/18	
	0.75	0.8	
	0.35	1/3	
	0.15	3/10	

At a party Sally wants to give all her friends ¾ of a bar of chocolate each. Look at the chart below and work out how many bars of chocolate she needs

Calculation Time

Look at the calculation below:

 $\underline{\underline{A}}$ + $\underline{\underline{B}}$ = $\overline{\underline{D}}$

Using the numbers 1, 2, 3 or 4 to replace A, B, C and D, what is the smallest and largest answer you can get?

Do the same with the numbers 2, 4, 6 and 8 Do the same with the numbers 1, 3, 5 and 7

Factory Workers

In a factory 2/3 of all workers were metal workers;

- 1/10 were polishers;
- 1/10 were furnace workers;
- 1/20 were packers and
- 1/12 were office staff.

The total workforce was more than 500 but less than 550. How many workers were there altogether?

How many workers were metal workers; polishers; furnace workers; packers and office staff?

Autumn 2: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Fractions: Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. Read and write decimal numbers as fractions, e.g. 0.71 = 71/100.	Me	My Teacher
Can you write ½ in at least three different ways by changing the denominator and numerator?		
Can you write 1/3 in at least three different ways by changing the denominator and numerator?		
Can you write equivalent fractions for x/100?		
Can you write equivalent fractions for any fraction?		
Can you write 1/4 and 3/4 in at least three different ways by changing the denominator and numerator?		
Can you write ½ in at least three different ways by changing the denominator and numerator?		

Year 5: Autumn 2

Week 4: Multiplication & Division

Multiply numbers up to 4-digits by a 1-digit or 2-digit number using a formal written method, including long multiplication for 2-digit numbers.

Autumn 2: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Autu	Autumn 2: Week 4					
Objective: Multiplication & Division		bers up to 4-digits by a 1-digit or 2-digit number using a formal od, including long multiplication for 2-digit numbers.					
	Comple	te these	e multiplications				
230 <u>x3</u>	405 <u>5x</u>		907 <u>14x</u>	809 <u>12x</u>			
317 <u>9x</u>	448 <u>5x</u>		902 <u>12x</u>	506 26x			
5231 <u>5x</u>	5645 <u>7x</u>		3244 <u>17x</u>	7209 <u>19x</u>			
7223 4x	9541 <u>5x</u>		8655 <u>24x</u>	6573 <u>34x</u>			

Autumn 2: Week 4: Practice and Consolidation

Multiplication & Division: Multiply numbers up to 4-digits by a 1-digit or 2-digit number using a formal written method, including long multiplication for 2-digit numbers.

	aching quence	Oral and Mental Activities Examples:	Pencil an Examples	d Paper Acti ::	vities		
~	Multiply any number with up to 3-digits by a single digit number.	 Remind pupils of the learning already done on multiplying 3 and 4 digit numbers by 	Multiply the 123 x 10 382 x 20	e following rapi 257 x 10 276 x 20	idly and men 276 x 10 119 x 30	tally, then ch 627 x 10 419 x 50	eck: 891 x 10 591 x 100
	Multiply any number with up to 4-digits by any single number. Multiply any	a single digit number. • The main difference here is that pupils are	Using colur 329 x 6 672 x 9	nnar multiplicc 429 x 7 318 x 5	ation comple [.] 728 x 9 627 x 8	te the followir 921 x 6 218 x 6	ng: 826 x 9 925 x 7
>	number with up to 3-digits by a 2-digit number. Multiply any number with up to 4-digits by a 2-digit number.	 moving on to multiplying by 2 digits. Remind pupils about multiplying by 10 and how this applies to multiplication of 2- digit numbers. 	Complete - 234 <u>12x</u> 468 <u>2340</u>	the following: 435 <u>21x</u> 435 <u>8700</u>	628 <u>17x</u> 4396 <u>6280</u>	779 <u>21x</u> 779 <u>1558</u>	923 <u>15x</u> 4615 <u>9230</u>
		 Multiply a number by multiples of 10s to ensure better level of understanding 	Complete 236 x 16 1672 x 15	the following c 528 x 14 2518 x 32	alculations: 729 x 13 1248 x 21	891 x 18 1278 x 21	239 x 20 1376 x 23

Autumn 2: Week 4: Mastering this Objective – Deeper Understanding

Multiplication & Division: Multiply numbers up to 4-digits by a 1-digit or 2-digit number using a formal written method, including long multiplication for 2-digit numbers.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

- Multiply any number with up to 3-digits by a single digit number.
- Multiply any number with up to 4-digits by any single number.
- Multiply any number with up to 3-digits by a 2-digit number.
- Multiply any number with up to 4-digits by a 2-digit number.

Theatre Prices							
Manchester	Birmingham	London	Leeds				
2109	1734	3812	1034				
£16	£18	£24	£15				

The top row of the table above shows how many tickets were sold by 4 different theatres in four different cities for the show 'Shrek'. The bottom row shows how much each ticket cost. Which city made most money?

Shopkeeper

A shopkeeper buys in 210 boxes of chocolates. In each box of chocolates there are 36 chocolates. How many chocolates were there in total?

After 5 days, 36 boxes had been sold. How many chocolates still remain?

Use formal methods to calculate your answers.

Multiplication Fun

Row A	Row B
3278	26
2381	16
1578	18

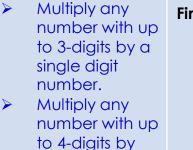
Multiply each of the 4-digit numbers in Row A by each of the 2-digit numbers in Row B. This should give you 9 different calculations.

Which combination gives you the largest number and which combination gives you the smallest number?

Use formal methods to calculate your answers.

Create your own calculation

Arrange these 5 digits in any way you like so as to make a multiplication problem of a 3digit number by a 2-digit number, eg, 123 x 67.


Arrange the numbers in such a way as to get the largest possible answer and then so as to get the smallest possible answer. Use formal methods to calculate your answers.

Autumn 2: Week 4: Working at greater depth

Multiplication & Division: Multiply numbers up to 4-digits by a 1-digit or 2-digit number using a formal written method, including long multiplication for 2-digit numbers.

Teaching Sequence

Activities for pupils working at greater depth:

 any single number.
 Multiply any number with up to 3-digits by a

	lo o algiis by a
	2-digit number.
•	Multiply any
	number with up

number with up to 4-digits by a 2-digit number.

nd the missing digit:							
2 6	25	728					
16X	18x	2 x					
3776	7650	16016					
32	25	662					
18x	24x	2					
5832	17400	17212					

Knowing the Product

The product of a 2-digit and 3-digit number is approximately 1500. What could the numbers be?

The product of a 2-digit and 3-digit number is approximately 6500. What could the numbers be?

The product of a 2-digit and 3-digit number is approximately 3000. What could the numbers be? **Get as close as you can**

Selling cars – Profit Margins

A car manufacturer is bringing out 4 new cars. They have been priced as below. The profit the garage will make from each car is also shown below.

Car Name	Price (£)	Profit (£)
Ford Lioness	35,000	4,123
Vauxhall Puma	24,000	1,768
Hondo Tiger	43,000	4,123
Mazda Cheetah	54,000	6,789

A garage buys in 3 of each car and then sells them, how much profit will it make altogether?

Use the columnar method for setting out your calculations.

Explain which is the quickest way of solving this problem.

Autumn 2: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Multiply numbers up to 4-digits by a 1-digit or 2-digit number using a formal written method, including long multiplication for 2-digit numbers.	Me	My Teacher
Can you multiply any number with 4-digits by a 2-digit number using formal methods?	1	
Can you multiply a 2 or 3-digit number by a 2-digit number using formal methods?		
Can you multiply a 2, 3 or 4-digit number by a 100s number?		
Can you multiply a 2, 3 or 4-digit number by a 10s number?		
Can you multiply a 2or 3-digit number by a 1-digit number using formal methods?		

Year 5: Autumn 2

Week 5: Statistics

Complete, read and interpret information in:

- tables, including timetables

Autumn 2: Week 5: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name Autumn 2: Week 5								
Objective:Complete, read and interpret information in:Statistics- tables, including timetables								
Bus Timetable 2011-2012 Buses to the city will run at the f	ollowing times:		Birmingham	06:23	06:53	07:23	07:53	
<u>Monday to Friday</u> Depart Arriv			Coleshill	06:35	07:05	07:35	08:05	
9.30 10.00 11.30 12.00 12.30 13.00	10.00 10.30 12.00 12.30		Nuneaton	07:00	07:22	07:51	08:22	
13.30 14.00 16.30 17.00 18.30 19.00	16.00 16.30 18.00 18.30		Hinckley	-	07:29	07:58	08:29	
18.30 19.00 20.30 21.00 22.30 23.00)		Leicester	07:17	07:48	08:17	08:48	
			What time does the train that leaves Birmingham at 06:53 arrive at Leicester?					

What time does the train that leaves Coleshill at 07:05 arrive at Hinckley?

If I miss the 07:22 from Nuneaton to Leicester, which train could I catch next?

What time does the bus that departs at 13.30 arrive (Monday to Friday)?

How many buses depart on Monday to

How long does each journey take?

Friday?

What is the longest gap between buses departing on Monday to Friday?

Autumn 2: Week 5: Practice and Consolidation

Statistics: Complete, read and interpret information in:

tables, including timetables

Teaching Sequence	Oral and Mental Activities Examples:	Pencil a Example	
 Know how to construct a table from a set of given information Know how to construct a table using only the relevant information Read a table to answer questions Read a timetable to answer questions Construct own table and timetable making decision about labelling 	 Talk to pupils about collecting information and collating it. Remind pupils about keeping a tally as part of collecting information. Look at a range of different tables and their suitability in terms of keeping the information collected. Look at a range of timetables and help pupils understand how to read them. Talk about where timetables are used and why they are so important. 	Newport Underwood Magor Rogiet Caldicot Portskewett Chepstow Bus A Bus A Bus B Bus C Bus D	
		Bus E	(

d Paper Activities s:

	Lo_0					
Newport	06:50		07:25	08:45	09:10	09:45
Underwood	07:00	07.25	07:41	08:55	09:19	09:53
Magor	07:11	07.41	07:51	09:04	09:31	10:02
Rogiet	07:18	07.59	07:59	09:11	09:38	10:11
Caldicot	07:29	08.12	08:09	09:16	09:47	10:16
Portskewett	07:33	08.15	08:14	09:20	09:53	10:21
Chepstow	07:45	08.30	08:30		10:05	10.40

between Newport and Chepstow between 06:50 and 10:40? If I miss the 08:55 from Underwood to Magor, when will the next bus be along? What time does the second bus leave Caldicot? If I catch the 08:45 from Newport, what time will I be at Rogiet? If I catch the 07:25 from Underwood what time will I be at Chepstow?

How many buses travel

e following timetable:

.							
	Abbey	Batty	Celtic	Delph			
Bus A	07:00	07:16	07:36	07:55			
Bus B	07:20						
Bus C	07:40						
Bus D	08:00						
Bus E	08:20						

The part timetable shows the times for one journey between Abbey and Delph and gives you the times 5 buses leave Abbey. If each bus takes the same amount of time as Bus A, fill in the rest of the timetable.

Autumn 2: Week 5: Mastering this Objective – Deeper Understanding

Statistics: Complete, read and interpret information in:

- tables, including timetables

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

- Know how to construct a table from a set of given information
- Know how to construct a table using only the relevant information
- Read a table to answer questions
- Read a timetable to answer questions
- Construct own table and timetable making decision about labelling

Cambridge	07:05	08:05	08:35	09:05
Trumpington	07:16	08:16	08:46	09:16
Great Shelford	07:22	08:22	08:52	09:22
Stapleford	07:25	08:25	08:55	09:25
Sawston	07:32		09:02	09:32
Pampisford		08:38	09:08	
Duxford Wheatsheaf	07:45			09:45
Duxford Imperial War Museum			09:15	
Whittlesford				09:50

At what time does the 08:16 train from Trumpington arrive at Palpisford? How long did the 08:35 train from Cambridge take before arriving at Sawston? How long is the journey between Cambridge and Stapleford? The train that arrives at 09:55 at Whittlesford left

Great Shelford at what time?

Look at the timetable above and create 5 questions for your friends to answer. In the meantime you will have 5 questions that your friends will give you.

Newport	Cardiff	Bridgend	Port Talbot	Swansea
02:30	02:55	03:15	03:35	03:55
	03:25			
		04:15		
			05:05	

Look at the timetable above showing the times of trains between Newport and Swansea. If each train takes exactly the same amount of time, fill in the missing times.

Think up 5 questions to ask your friends in relation to the timetable.

Is there any other way you could present this information that would be easier for someone to read? Try and design an alternative timetable.

Autumn 2: Week 5: Working at greater depth

Statistics: Complete, read and interpret information in:

- tables, including timetables

Time

12:00

12:15

12:20

12:30

12:50

12:55

13:20

13:45

13:50

14:05

14:30

14:35

Teaching Sequence

Activities for pupils working at greater depth:

Know how to construct a table from a set of given information Know how to construct a table using only the relevant information

- Read a table to answer questions
- Read a timetable to answer questions
- Construct own table and timetable making decision about labelling

~	DEF	PARTURES
Fligh	nt	Destination
OD	1961	New York
PN	0034	Chicago
T3	0529	Las Vegas
PN	2415	Honolulu
GI	1872	San Francisco
T3	0944	Washington
SF	2778	Houston
OD	0061	Miami
ΒK	1532	Boston
OD	3487	New York
PN	0194	Atlanta
SF	0028	Chicago

you will ever come across. However, it is very interesting. Cet a copy of the full underground map. List all the stations on the circle line.

Then work out journeys between two stations calling at as few stations as possible.

Departure time

Gate

06

18

32

14

09

27

20

31

04

12

03

08

The London

the most

Underground

map is one of

complex maps

This Departure timetable tells you the times flights leave for various American cities. It gives you the time of departure; flight number; destination and which gate it leaves from. Use the information to create 10 questions

Use the information to create 10 questions you could ask your friends related to this timetable.

Now create a similar departure board for planes leaving Heathrow.

A train leaves London Victoria every 30 minutes after 06.00 each morning. It calls at London Bridge; Herne Bay; Gravesend and Gillingham. The journey between London Victoria to Gillingham takes 1hr and 30 mins. London Victoria to London Bridge takes 20 minutes; London Bridge to Herne Bay 30 minutes; and Herne Bay to Gravesend 10 minutes.

Make up your own timetable showing the first 5 trains that leave London Victoria each morning.

Autumn 2: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

: Complete, read and interpret information in: es, including timetables	Me	My Teacher
Can you use the London underground map and ask and answer questions related to it?		
Can you read and answer questions about a bus or train timetable for your immediate locality?		
If given a set of information, can you create your own timetable?		
By looking at a timetable, can you think of questions you could ask your friend to solve?		
Can you read a more complex bus or train timetable?		
Can you read a simple bus or train timetable?		

Year 5: Autumn 2

Week 6: Consolidate and Assess

- Start this week by revising the learning covered in the Autumn term so as to ensure pupils are fluent and secure with their basic skills.
- Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in the Autumn term.
- Analyse the results and use information to help focus the intervention and pre-teaching sessions, as needed, for the following term.

Year 5: Autumn 2: Week 6

The focus of the consolidation should be the following aspects:

- Count on/back from a given number in steps of 100/1000/10,000 up to and beyond 100,000
- Read, write and order numbers to 100,000 and beyond
- Compare numbers to 100,000 and beyond
- Partition numbers to 100,000 and beyond
- Find powers of 10 more than a given number
- Read, write, order and compare decimal numbers up to 2dp
- Partition decimal numbers to 2dp
- Round decimals with 1 dp to the nearest whole number
- Multiply and divide numbers mentally drawing upon known facts
- Multiply and divide any whole number by 10 and 100 and multiply and divide any decimal number by 10 and 100
- Count on/back with positive and negative numbers, including through zero
- Count on/back in fraction and decimal sequences e.g. 2.5 or 1 $^{1\!/_2}$
- Round any number up to 100,000 to the nearest 10, 100 and 1000
- Add/subtract: 4-digit and 1-digit numbers, a 4 digit and tens, a 4-digit number and hundreds and a 4-digit number and thousands and combinations of pairs of 2,3 or 4 digit numbers
- Find factors and factor pairs of each number up to and beyond 20
- Find complements to 1000
- Convert units of measurement (km and m; cm and m; cm and mm; gram and km, ml and L)
- Although practise and consolidation should be on-going through each half term, during Week 6 there should be greater opportunity taken to check pupils' learning and understanding.
- Summative and Formative assessment procedures should help teachers gain a clear picture as to which pupils are at different stages, including mastery and greater depth.

	YEAR 5 : SPRING 1: Overview and Teaching Steps						
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6		
3 Place Value Roman Numerals	3 Addition & Subtraction	4 Multiplication & Division	2 Measures Area	2 Geometry Reflection/ Translations	3 Geometry		
 Interpret negative numbers in context, count forwards and backwards with positive and negative numbers including through zero. Read Roman numerals to 1000 and recognise years written in Roman numerals 	Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.	Divide numbers up to 4-digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context.	Calculate & compare the area of rectangles (including squares) including using standard units, square centimetres (cm ²) and square metres (m ²) & estimate the area of irregular shapes.	Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed	Distinguish between regular and irregular polygons based on reasoning about equal sides and angles		
 Interpret temperatures at - °C on a thermometer. Count forward from -20 to 20 Count backwards from 20 to -20 Revisit Roman numerals to 100 Read Roman numerals to 1000 Write Roman numerals to 1000 Read dates in context represented in Roman numerals 	 Use rounding to add and subtract any 2-digit numbers to check reasonableness of answer. Use rounding to add and subtract any 3-digit numbers to check reasonableness of answer. Use rounding to add and subtract any 4-digit numbers to check reasonableness of answer. 	 Divide any number with 3-digits by a single digit number with no remainder. Divide any number with 4-digits by a single digit number with no remainder. Divide any number with 3-digits by a single digit number with a remainder. Divide any number with 4-digits by a single digit number with a remainder. Divide any number with 3-digits by 10, showing remainder where appropriate. Divide any number with 4-digits by 10, showing remainder where appropriate. 	 Know the units of measure for calculating area and how to represent (cm²/m²) Explain how to calculate the area of a shape using a formula Calculate area using formula Calculate the area of composite shapes by dividing into smaller shapes Calculate the area of larger spaces using m² 	 Reflect a shape and re- plot Translate a shape and re- plot Describe the properties of the reflected and/or translated shape – evidencing that the shape and size has not changed 	Use known facts to explain differences between shapes		

Year 5: Spring 1

Week 1: Place Value: Roman Numerals and Negative Numbers

- Interpret negative numbers in context, count forwards and backwards with positive and negative numbers, including through zero.

- Read Roman numerals to 1000 and recognise years written in Roman numerals

Spring 1: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Spring 1: Week 1					
Objective: Place Value	forward and	Roman Numerals and Negative Numbers - Interpret negative numbers in context, count forward and backwards with positive and negative numbers, including through zero. - Read Roman numerals to 1000 and recognise years written in Roman numerals					
What are the next 2 numbers in these sequences?				Write the value of numero	_	an	
+5; +4; +3; +2	2 +1; 0;			V11			
-8; -7; -6; -5	5; -4;			XX111			
-7; -5; -3	3;			DCXX			
+10; +7; +4	:+1;			XC			
+16; +12; +8	8; +4;			Μ			
-16; -13; -10;	-7; -4;			CMXX11			
-40; -30; -20); -10;			XC11			
+19; +14; +9	9; +4;			XX111			

Spring 1: Week 1: Practice and Consolidation

Place Value: Roman Numerals and Negative Numbers - Interpret negative numbers in context, count forward and backwards with positive and negative numbers including through zero. - Read Roman numerals to 1000 and recognise years written in Roman numerals

	ching vence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:									
	Interpret temperatures at -°C on a thermometer. Count forwards from -20 to 20 Count	 Remind pupils of the learning already covered with regard to negative numbers in Year 4. Use a large metre stick to show what 		+4; +	ese sequ 2;	Jend	ces:	+8; +5; -15; -13			; -7; -5;	
 >	backwards from 20 to -20 Revisit Roman	happens when we go through zero.Consider when negative numbers are		n 2	Out +3		In	Out -5		In -5	0	t
	numerals to 100 Read Roman numerals to 1000	used in everyday life, eg, measuring temperature of freezers, etc.		.9	+7 -4		+9 +2	-3 -2		-10) +2	4
	Write Roman numerals to 1000	 Remind pupils of the learning about Roman numerals to 	50	.7			78	-2			90	
	Read dates in context represented in	 100 giving particular attention to numbers like 4; 9; 40 and 90; Discuss when Roman 	39		LII		810	LXX	11		175	CXX
	Roman numerals	numerals are used in everyday life, including dates.	156		XX11		275	XL1	11		46	СМ

Spring 1: Week 1: Mastering this Objective – Deeper Understanding

Place Value: Roman Numerals and Negative Numbers - Interpret negative numbers in context, count forward and backwards with positive and negative numbers including through zero.

- Read Roman numerals to 1000 and recognise years written in Roman numerals

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

- Interpret temperatures at -°C on a thermometer.
- Count forwards from -20 to 20
- Count backwards from 20 to -20
- Revisit Roman numerals to 100
- Read Roman numerals to 1000
- Write Roman numerals to 1000
- Read dates in context represented in Roman numerals

Which of these sequences are correct and
which are not? Explain why.

Write the following dates in Roman numerals:

-19	-14	-9	-4	0	+4	+9
17	13	9	5	1	-3	-7
18	8	0	-2	-12	-22	-32
125	90	55	30	-5	-40	-75

Decide on your own	In	Out	In	Out
positive or negative	+2		-56	
number to operate	-13		-34	
these machines	-6		+2	
	-28		-54	
	+21		-6	

Roman numerals

If the
Romans
had played
cricket,
record the
Centurions'
scores.

Name	Score	Roman
Flavius	40	
Tintus	120	
Claudius	75	
Julius	90	
Arius	61	

Spring 1: Week 1: Working at greater depth

Place Value: Roman Numerals and Negative Numbers - Interpret negative numbers in context, count forward and backwards with positive and negative numbers including through zero.

- Read Roman numerals to 1000 and recognise years written in Roman numerals

3

Teaching Sequence

Activities for pupils working at greater depth:

Interpret temperatures at -°C on a thermometer.

- Count forwards from -20 to 20
- Count backwards from 20 to -20
- Revisit Roman numerals to 100
- Read Roman numerals to 1000
- Write Roman numerals to 1000
- Read dates in context represented in Roman numerals

Use as few or as many of these numbers as you like and make pairs of numbers as set out below.

- Make up a pair of numbers that are more than 50 apart.
- Make up a pair of numbers that are less than 10 apart
- Make up two numbers that have the greatest difference.
- Now create your own questions with another set of numbers.

Write the full date in Roman numerals:

Date	Roman Date
4/11/2011	1V/ X1/ MMX1
19/12/1990	
12/4/1951	
30/7/2007	
18/5/2011	
7/5/1980	

The coldest and warmest temperatures for the first 10 days in January were recorded:

	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
warmest	+2	+3	+5	+1	-3	-5	-2	0	+1	+3
coldest	-2	0	+1	-2	-6	-8	-7	-4	-5	-2

What is the difference in temperature between the warmest recorded and the coldest recorded? Make up another 5 questions related to this table.

Spring 1: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value: Roman Numerals and Negative Numbers - Interpret neg numbers in context, count forwards and backwards with positive and numbers including through zero. - Read Roman numerals to 1000 and recognise years written in Roma	d negative	My Teacher
Can you count backwards from + 30 to -30?		
Can you count forwards from - 20 to + 20?		
Can you interpret temperatures at minus ⁰ C on a thermometer?		
Do you know all the Roman numerals to 1000?		
Do you know the Roman symbol for 100?		
Do you know the Roman symbol for 50?		
Can you remember the Roman numbers from	m 1 to 10?	

Year 5: Spring 1

Week 2: Addition & Subtraction

Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Spring 1: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Spring	Spring 1: Week 2				
Objective: Addition & Subtraction		se rounding to check answers to calculations and determine, in the ontext of a problem, levels of accuracy.					
Round these numbers to nearest 10			Round these number 100	rs to the neo	arest		
23				3209			
185				1204			
67				3109			
329				210			
201				650			
178				2106			
276				2550			
210				1820			

Spring 1: Week 2: Practice and Consolidation

Addition & Subtraction: Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:				
 Use rounding to add and subtract any 2- digit numbers to check reasonableness of answer. Use rounding to add and subtract any 3- digit numbers to check reasonableness of answer. Use rounding to add and subtract any 4- digit numbers to check reasonableness of answer. 	 Remind pupils of the rules related to rounding. Talk to pupils about the usefulness of rounding as a way of checking reasonableness of calculations. Use rounding in different contexts, finding quick ways of getting possible answers. Consider the use of rounding when dealing with money, mass and length. 		Round to 100 100 and to 100 and to 100	23916 37501 78210 91023 92340 5 the nearest 3 £25.9 7 £12.5 earest 100 m 45m 6791 ions and rou imate rounde 3 + 329 91	25 £76.91 50 £20.78 metres: m 9Km 3 nd numbers t ed answer: 12 + 452 10	3 29m

Spring 1: Week 2: Mastering this Objective – Deeper Understanding

Addition & Subtraction: Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

	TeachingIf pupils have mastered this objective the activities independently:				ey will be able to complete these					
A	Use rounding to add and subtract any 2- digit numbers to check reasonableness of answer.	What are the highest and lowest numbers it could be?cA number rounded to the nearest 100 is 4900. What are the highest and lowestc		ying to wo will be. Th distance iculty (ac	ork out how ne table be of each st	pe the org v difficult e elow shows age and th how steep n 1 and 5.	ach 5 the ne level			
≻	Use rounding to add and	numbers it could be? A number rounded to the nearest 1000 is	Stage	Ex dist Km	Rounded	Difficulty	Rate			
	subtract any 3- digit numbers to check	47000. What are the highest and lowest	1	294		3				
		As Tom goes around the supermarket he	2	528		2				
	of answer. Use rounding to	rounds his purchases to the nearest £1. He buys the following items:	3	276		4				
	add and subtract any 4-	Bread 95pBeans 52pIce Cream £2.72Butter 79p	4	602		1				
	digit numbers to check	Bacon £3.45Sausages £2.71Tea Bags £2.17Sugar £1.81	5	305		5				
	reasonableness of answer.Milk 99pJam £1.36Tom has £20. Is he confident that he has enough? Approximately, how much		the di	stance to	the neare	ating by rou st 10Km ar ance by the	nd then			

enough? Approximately, how much change should he expect?

87

difficulty factor. Order each stage

according to its rating.

(c) Focus Education (UK) Ltd

Spring 1: Week 2: Working at greater depth

Addition & Subtraction: Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.

	eaching equence	Activities for pupils working at greater depth:									
	Use rounding to add and subtract any 2-	the near	the nearest 10 and then added together or					Look at the table below showing costs of train tickets between London and			
	digit numbers	subtract Here are		the ansv	vers.			Milton K	Stoke	M'chest	
	to check						Adult	£67.85	£82.92	£121.95	
	reasonableness of answer.	230;	560;	780;	920;	830	Child	£35.50	£45.50	£75.55	
A A	Use rounding to add and subtract any 3- digit numbers to check reasonableness of answer. Use rounding to add and subtract any 4-	could ha addition Now do	ave been s and sub the same s that hav	ossible ca n in the firs otractions e by crea ve been r	st place (s). iting two	both 4-digit	answer the I have £100 adult and 6 I have £200 adult and 2	se question), will I have a child ticke), will I have 2 children's	o the neare hs: e enough to et to Milton e enough to tickets to S nore questio	buy an Keynes? buy 1 toke?	
	digit numbers to check reasonableness of answer.	Stage 1 2415Km	Stage 2 1724Km	Stage 3 821Km	Stage 4 938Km	Stage 5 2109Km	A family is going on a driving holiday around America. They have 5 stages to the holiday. The distances travelled are outlined on the table.				
	or driswer.	They are trying to work how much they will spend on fuel. Firstly, they round up each stage to the nearest 100Km. and then they work out that each 100Km will cost them £15									

in fuel. What will be the approximate cost of the fuel?

Spring 1: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Addition & Subtraction: Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.	Me	My Teacher
Can you use rounding in relation to approximating distances?		
Can you use rounding as a way of working out if you have enough money to pay for several purchases?		
Can you round any number up to 1,000,000 to the nearest 100,000, 10,000, 1000, 100 or 10?		
Can you round any number up to 100,000 to the nearest 10,000, 1000, 100 or 10?		
Can you round any number up to 10,000 to the nearest 1,000, 100 or 10?		
Can you round any number up to 1000 to the nearest 100?		
Can you round any number up to 1000 to the nearest 10?		
Can you round any number up to 100 to the nearest 10?		

Year 5: Spring 1

Week 3: Multiplication & Division

Divide numbers up to 4-digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context.

Spring 1: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Spring 1: Week 3						
Objective: Multiplication & Division		Divide numbers up to 4-digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context.					
	Calco	Jate the	ese problems				
235 ÷ 5	248 ÷ 4		9150 ÷ 9	6076 ÷ 3			
3372÷ 6	1036÷7		1452 ÷ 7	8987 ÷ 6			
566÷5	247÷8		8114 ÷ 7	3247 ÷ 10			
873÷5	987÷4		7209 ÷ 10	8656 ÷ 10			

Spring 1: Week 3: Practice and Consolidation

Multiplication & Division: Divide numbers up to 4-digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context.

	aching quence	Oral and Mental Activities Examples:		il and I nples:	Paper A	Activitie	es					
A A	Divide any number with 3-digits by a single digit number with no remainder. Divide any number	 Remind pupils of the learning already done on dividing 2 and 3 	Divide 210	e the foll 450	owing n 720	umbers 810	by 10: 930		98	80	120	320
	with 4-digits by a single digit number with no remainder.	digit numbers by a single digit number.	Now 0	divide th 657	ese by 1 983	10: 824	781	936	902	827	943	127
~	Divide any number with 3-digits by a single digit number with a remainder.	 The main difference here is that pupils are moving on to 	Calcu	ulate the	followir	ng: Set t	hem o	ut using		nal m	ethoc	
	Divide any number with 4-digits by a single digit number with a remainder.	dividing larger numbers, with and without remainders.	456 - 1810 -	-		8 ÷ 7 22 ÷ 9		25 ÷ 9 276 ÷ 4		2112 5886	-	
>	Divide any number with 3-digits by 10, showing remainder	 Remind pupils about dividing by 		may or								
	where appropriate. Divide any number	10 and how this applies to division of larger numbers.	638 1738	-	. –	9 ÷ 9 7 ÷ 7	-	91 ÷ 8 45 ÷ 5		9246 6729		
*	with 4-digits by 10, showing remainder where appropriate	 Set out the divisions by using the formal method and 		der was many bri	-	-				ered 9	120 b	ricks.
		encourage pupils to follow this method.		ermen co d the fisl ?	-			-			-	-

Spring 1: Week 3: Mastering this Objective – Deeper Understanding

Multiplication & Division: Divide numbers up to 4-digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context.

Teaching If pupils have mastered this objective they will be able to complete these Sequence activities independently: Divide any number 2 Kg of sweets are divided equally between When a 3-digit number is divided by a 1with 3-digits by a 7 children. How many grams of sweets will digit number the answer is 117. single digit number with no remainder. each get and how much will be left over? What was the original 3-digit number? Divide any number \succ There could be a number of answers. Give with 4-digits by a A 5m piece of wood is cut into 9 equal two possibilities. single digit number with no remainder. pieces. How long will each piece be and ≻ Divide any number how much wood is left over? When a 4-diait number is divided by a 1with 3-digits by a digit number the answer is 927. single digit number with a remainder. £18.50 is divided equally between 8 What was the original 4-digit number? Divide any number ≻ children. How much does each child get There could be a number of answers. Give with 4-digits by a and how much money is left over? two possibilities. single digit number with a remainder. Jenny has a book that has 238 pages. Ahmet has an on-line directory of names of Divide any number \succ with 3-digits by 10, She reads 7 pages each day. members of a sports club. showing remainder How long will it take her to read her book? where appropriate. 25 names are listed on each page, \geq Divide any number with 4-digits by 10, Henry has 342 stickers. beginning with page 1. showing remainder He can stick 9 stickers into each page. where appropriate How many pages does he need to stick all On what page is the 730th name listed? his stickers in? Explain a quick way of working this out. 216 children turn up for a football tournament. The organiser makes up teams of 6 children. How many teams will there

be?

Spring 1: Week 3: Working at greater depth

Multiplication & Division: Divide numbers up to 4-digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context.

Teaching Sequence

Divide any number with 3-digits by a single digit number with no remainder.

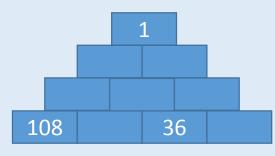
- Divide any number with 4-digits by a single digit number with no remainder.
- Divide any number with 3-digits by a single digit number with a remainder.
- Divide any number with 4-digits by a single digit number with a remainder.
- Divide any number with 3-digits by 10, showing remainder where appropriate.
- Divide any number with 4-digits by 10, showing remainder where appropriate

Activities for pupils working at greater depth:

A 2m piece of ribbon has been divided equally among a number of people (no more than 10).

There is a 5 cm piece left over.

How many people received the pieces of ribbon?


1000 marbles were shared equally between 5 and 10 children.

When they were handed out there were 4 left over.

How many children were there and how many did each get?

When 3472 was divided by a single-digit number between 3 and 9 there was no remainder. How many possible single-digit numbers could there have been?

When 4673 was divided by a single digit number larger than 5 there was a remainder of 2. How many possible single-digit numbers could there have been? Look at the tower below. When dividing the two bricks next to each other it gives you number on the brick above. Fill in the missing numbers.

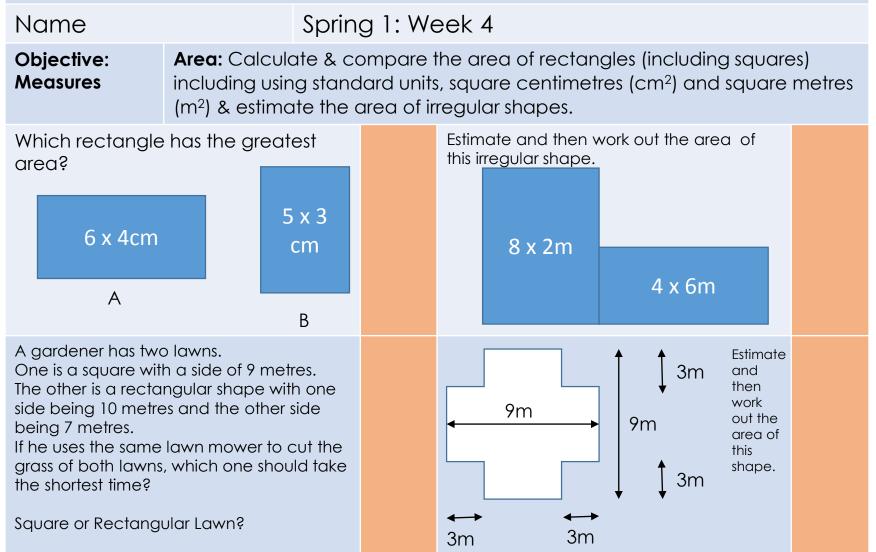
Cheese costs £7.50 for 1kg. Mary buys 200 grams of cheese. How much does she pay?

Next week the cheese is 20% cheaper. How much would 100g cost then?

Spring 1: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Divide numbers up to 4-digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context.	Me	My Teacher			
Can you divide any number with 4-digits by 10 with a remainder?	<				
Can you divide any number with 3-digits by 10 with a remainder?					
Can you divide any number with 4-digits by a single digit number with remainder?					
Can you divide any number with 3-digits by a single digit number with remainder?					
Can you divide any number with 4-digits by a single digit number (no remainder)?					
Can you divide any number with 3-digits by a single digit number (no remainder)?					


Year 5: Spring 1

Week 4: Measures: Area

Calculate & compare the area of rectangles (including squares) including using standard units, square centimetres (cm²) and square metres (m²) & estimate the area of irregular shapes.

Spring 1: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Spring 1: Week 4: Practice and Consolidation

Measures: Area: Calculate & compare the area of rectangles (including squares) including using standard units, square centimetres (cm²) and square metres (m²) & estimate the area of irregular shapes.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
Know the units of measure for calculating area and how to represent	 Remind pupils of the work they have already done in relation to perimeter and area in Year 4. Remind them of the 	Using squared paper, draw rectangles or squares that have the following areas: 20cm ² 48cm ² 36cm ² 24cm ²
 (cm²/m²) Explain how to calculate the area of a shape using a formula Calculate area using formula 	 quick way to work out the area of a rectangle and square. Use examples to compare. Remind pupils of the use of the symbol ² to 	On squared paper draw these 3 rectangles or squares: 8 x 6 cms 5 x 5 cms 10 x 8 cms 7 x 5 cms Estimate which you believe to the largest area. Now check your estimations by working out the area of each, using the formula for finding area.
 Calculate the area of composite shapes by dividing into smaller shapes Calculate the area of larger spaces using m² 	 stand for the measurement of an area. Start by using squared paper as a reminder. Move on to show how to measure the area of irregular shapes made up of two rectangles or squares. 	 Find the area of the following by estimating in the first instance and then using measures to find out the exact dimensions: Measure to the nearest cm or m in each case: Playground or football or netball pitch on playground; Desk top in classroom Hall floor A book Computer monitor Interactive White Board

Spring 1: Week 4: Mastering this Objective – Deeper Understanding

Measures: Area: Calculate & compare the area of rectangles (including squares) including using standard units, square centimetres (cm²) and square metres (m²) & estimate the area of irregular shapes.

Teaching Sequence

 \geq

 \geq

 \geq

>

 \geq

If pupils have mastered this objective they will be able to complete these activities independently:

Know the units of measure for calculating area and how to represent (cm ² /m ²) Explain how to calculate the area of a shape using a formula	10cm 4cm 5cm 5cm 8cm	Find the area of the L shaped figure. Estimate first and then work it out. Explain how you did it.	A large playing area has an area of 100m ² . If the sides are in whole metres, what could be the dimensions of the playing area? A book cover has an area of 32cms ² The sides of the book measure in whole cm. There are 2 possible dimensions for the book. Which is the most likely? Explain why.
Calculate area using formula Calculate the area of composite shapes by dividing into smaller shapes Calculate the area of larger spaces using m ²	In a school there are 7 cla Headteacher decides tha going to have its own sma creates garden boxes of 3 class. The boxes are set in a larg was 20m x 10m. Work out the area taken u garden boxes and work o grass that remains.	at each class is all garden and 3m x 2m for each ge grass field that up by the 7	A farmer has a very long field which measures 120m by 50 m. He decides to grow cabbages in a quarter of the field; potatoes in another third of the field and sprouts in the remaining part of the field. Work out the area he has for growing: • Cabbages; • Potatoes; and • Sprouts

Spring 1: Week 4: Working at greater depth

Measures: Area: Calculate & compare the area of rectangles (including squares), including using standard units, square centimetres (cm²) and square metres (m²) & estimate the area of irregular shapes.

	e .				
Teaching Sequence		Activities for pupils working at greater depth:			
A A A	Know the units of measure for calculating area and how to represent (cm ² /m ²) Explain how to calculate the area of a shape using a formula Calculate area using formula Calculate area using formula Calculate the area of composite shapes by dividing into smaller shapes Calculate the area of larger spaces using m ²	Draw 3 different rectangles or squares where the perimeter is 48cm. Estimate which has the greatest area. Now check and record. Draw 3 different rectangles or squares where the perimeter is 36cm. Estimate which has the greatest area. Now check and record.	Laying a lawn Alf decides to lay a lawn in his back garden. The dimensions of his back garden are 12 metres by 10 metres. He wants to leave a border of 1m going all the way around his back garden. Make a diagram of the space he is going to lawn and work out the area of this space. If the grass he buys costs £3.50 per square metre, how much will it cost to lay the lawn?		
A		Fencing FieldsA farmer buys 3.2km of wire netting to go around two separate rectangular fields.He uses 1600m for the first field and 1.2km for the second field.How much wire netting does he have left?What could be the perimeters and areas of the two fields?	If I know the dimensions of a right angled triangle, how can I work out its area? Now try finding the area of a right angled triangle that has one side of 10cm. and the other side which is 15cm. What if the sides were 12cm x 20cm? Why can you not work out the area of a triangle which does not have a right angle in the same way. Explain your thinking.		

Spring 1: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

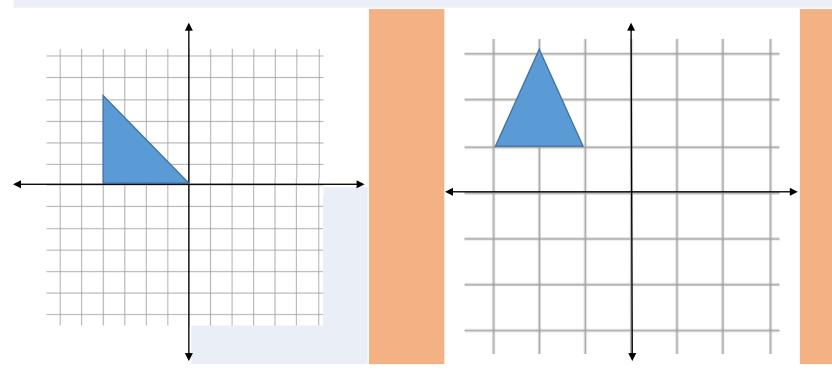
Measures: Area: Calculate & compare the area of rectangles (including squares), including using standard units, square centimetres (cm ²) and square metres (m ²) & estimate the area of irregular shapes.	Me	My Teacher
Are you confident to estimate the area of an irregular shape before finding out the exact area?	4	
Are you confident to estimate the area of a rectangle or square before finding out the exact area?		
Can you use information about calculating the area of a square or rectangle to work out the area of irregular shapes that can be divided up into squares and rectangles?		
Do you know that the area of a rectangle is measured by multiplying the length of the longer side by the shorter?		
Do you know that the area of a square is measured by multiplying the length of a side by itself?		
Do you know that the area of a square or a rectangle is measured in cm ² or m ² ?		

Year 5: Spring 1

Week 5: Geometry: Reflection & Translations

Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed

Spring 1: Week 5: Pre-Learning Task


The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name Spring 1: Week 5

Objective: Geometry

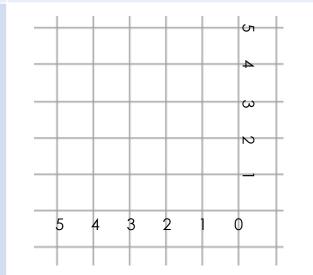
Reflection & Translation: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed

Reflect the shapes shown into each of the 4 quadrants

Spring 1: Week 5: Practice and Consolidation

Geometry: Reflection & Translation: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:	
 Reflect a shape and re-plot Translate a shape and re- plot Describe the properties of the reflected and/or translated shape – evidencing that the shape and size has not changed 	 Focus on the use of the language: reflection and translation and ensure pupils are secure and confident about what they mean. Ensure pupils are also secure and confident about the use of the 4 quadrants. Remind pupils about numbering the axes so that they can plot shapes according to numbers shown. Talk to pupils about the naming of the 4 quadrants and how they are often shown using Roman numerals. 	Use squared paper and put in a horizontal and vertical axes. Create the four quadrants: II I IV Number the coordinates and then colour a square in quadrant one and reflect it to quadrant 2, 3 and 4. Use squared paper and put in a horizontal and vertical axes. On each piece of squared paper draw the following shapes: • Rectangle; • Triangle; and • The letter L Make sure the base of the shape lies on the axes. Reflect each in turn into each of the 4 quadrants.	
		Use squared paper putting in the same horizontal and vertical axes. On each piece of squared paper draw the same shapes as before but this time note their positions by using numbers on the horizontal and vertical axes. Translate each shape into another quadrant by using precise movements which can be described, eg, (2,2 to 4, 4)	


Spring 1: Week 5: Mastering this Objective – Deeper Understanding

Geometry: Reflection & Translation: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed

If pupils have mastered this objective they will be able to complete these

Teaching Sequence

- Reflect a shape and re-plot
- Translate a shape and replot
- Describe the properties of the reflected and/or translated shape – evidencing that the shape and size has not changed

activities independently:

Join the point (1,1) to (4,1) and then (4,1) to (4,4) and then to (1,4) before joining (1,1)

Make other shapes in the first and second quadrants by plotting the points as with the square in the example.

Now reflect each point by working out the distance from the vertical and horizontal axes.

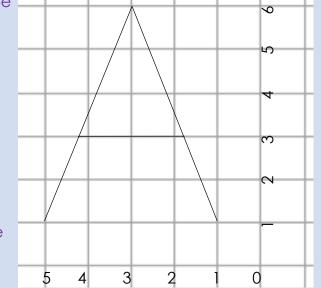
Using the same set up as before, this time translate the square into another quadrant taking care to ensure that the movement is recorded carefully. Make sure that the size and shape are unaltered.

Now plot different shapes on the first and second quadrants and reflect and translate these into other quadrants.

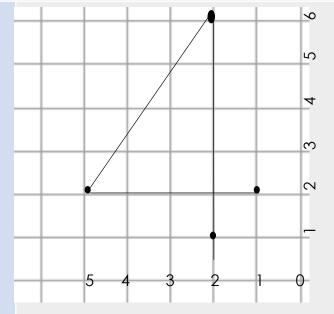
Make an irregular shape in the first or second quadrant by plotting each point very carefully.

Don't show this to your friend but just provide them with a list of the coordinate points. See how well they can match your shape. See if you can both translate or reflect your shape.

Put the following shapes into the first or second quadrant and then reflect and translate them into the other quadrants.


Spring 1: Week 5: Working at greater depth

Geometry: Reflection & Translation: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed


Activities for pupils working at greater depth:

Teaching Sequence

- Reflect a shape and re-plot
- Translate a shape and replot
- Describe the properties of the reflected and/or translated shape – evidencing that the shape and size has not changed

Staring with the letter A, plot letters of the alphabet on to the first or second quadrant and then reflect them into the other quadrants taking account of the distance from the vertical and horizontal axes. Use only letters that have straight lines: A E F H I K L M N T V W X Y Z

Using the numbers 4 and 7 plot each onto the first or second quadrant as shown with the number 4 above – record the points and then translate the number into another quadrant taking careful note of the movements made.

Now choose 4 letters from the alphabet to do the same with.

Spring 1: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry: Reflection & Translation: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed	Me	My Teacher
Can you translate a shape from one quadrant to another ensuring that the shape and size is unchanged?	4	
Can you reflect a shape from one quadrant to another when the shape does not sit on the horizontal or vertical plane?		
Can you reflect a shape from one quadrant to another when the shape sits on the horizontal or vertical plane?		
Can you pinpoint a spot within a quadrant and describe it by the coordinate points?		
Do you know which is the first, second, third and fourth quadrant?		
Can you create the four quadrants in the coordinate plane?		

Year 5: Spring 1

Week 6: Geometry

Distinguish between regular and irregular polygons based on reasoning about equal sides and angles

Spring 1: Week 6: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

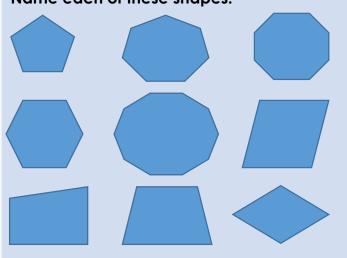
Name	Sp	Spring 1: Week 6				
Objective: Geometry	Distinguish betwee about equal sides	ween regular and irregular polygons based on reasoning des and angles				
Draw a regula triangle in the	r and an irregula space below	r	Apart from rectangle and square, name two other 4-sided shapes and draw them below.			

Spring 1: Week 6: Practice and Consolidation

Geometry: Distinguish between regular and irregular polygons based on reasoning about equal sides and angles

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
 Use known facts to explain differences 	 Provide pupils with a definition for 	How many different 4 sided shapes can you draw? Some will be regular and some irregular. Name them.
altterences between shapes	 each of these shapes: Parallelogram Rhombus Kite Quadrilateral Trapezium Help them to name the polygons that have more than 4 sides. Play the description game. I have 4 sides; 2 of my angles are 90°, etc. 	Link these polygons to the number of sides they have: Pentagon Octagon Hexagon Becagon Find as many regular and irregular shapes as you can and name them: Create your own drawing using intersecting shapes and look for various polygons. Find as many look for various polygons.

Spring 1: Week 6: Mastering this Objective – Deeper Understanding


Geometry: Distinguish between regular and irregular polygons based on reasoning about equal sides and angles

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

 Use known facts to explain differences between shapes

Name each of these shapes:

Same and Different

Take any two of the shapes above and explain how they differ from one another. Record your findings.

You could choose two and give them to your friend to explain and then record.

Name a shape that has more than 4 sides and has a least one set of parallel lines.

Card Game

Make up a set of cards with different shapes on. The shapes should include lots of 4-sided shapes, such as rhombus; trapezium; etc. and as many triangles as possible: equilateral; isosceles; right angled triangle, etc. and all the polygons up to 10 sides. Play in groups of 4.

Distribute the cards amongst all players. The shape should not be revealed to others. The idea is that one person has a card and has to try and get the others to guess the shape by being very succinct with their description. Points can be awarded, etc.

Who am I?

I have more than 5 sides but not 10.
 My name is used by a pussy that lives in the sea.

Who am l?

 I used to be a square but someone leant on me? Who am I?

Can you make some more of these type of clues to help someone identify the shape?

Spring 1: Week 6: Working at greater depth

Geometry: Distinguish between regular and irregular polygons based on reasoning about equal sides and angles

Teaching Sequence

Use known facts to explain differences between shapes

Activities for pupils working at greater depth:

Create a game on a board which has various shapes already marked within each space, as above.

Have a set of cards with descriptions on and players move to the next square where there is a shape that matches the description. The board can be full or semi covered.

Logically Shaped

Take 6 different shapes.

Each shape will have 4 different colours. All shapes will be either small or large. Give them all values, eg, rhombus is 6; triangle is 3; quadrilateral is 4; Colours also have values, eg green is 4. Large will double your score; small will halve your score. All will be on cards of the same size.

So a blue rhombus may be worth 6 (for the shape) and 2 (for the colour). The 8 score is then doubled or halved according to size. There will be 48 cards altogether. Each player is given 6 cards and they have to work out their score. The one with the highest score wins.

Spring 1: Week 6: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

etry: Distinguish between regular and irregular polygons based oning about equal sides and angles	Ме	My Teacher
Can you recognise parallel and perpendicular lines within shapes?	<	
Can you name the polygons with 5 to 10 sides?		
Can you describe a quadrilateral well enough for someone to identify it?		
Do you know the following: parallelogram; rhombus; kite; trapezium?		
Do you know what a quadrilateral is?		
Can you identify and name triangles: equilateral; isosceles; scalene or right angled?		

	YEAR 5 : SPRING 2: Overview and Teaching Steps						
WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6		
5 Multiplication & Division	4 Geometry	2 Fractions	3 Measures	2 Statistics	Consolidate and Assess		
Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.	-Identify 3D shapes, including cubes and other cuboids, from 2D representations - Use the properties of rectangles to deduce related facts & find missing lengths & angles.	Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements.	 Estimate volume (e.g. using 1 cm³ blocks to build cubes, including cuboids) & capacity (e.g. using water). Convert between different units of metric measure (e.g. km/m; cm/m; cm/mm; g/kg; l/ml). 	Solve comparison, addition and difference problems using information presented in a line graph	Start this week by revising the learning covered in the Autumn and Spring terms so as to ensure pupils are fluent		
 Multiply any number by 10. Multiply any number by 100. Multiply any number by 1000. Divide any number by 10. Divide any number by 100. Divide any number by 1000. 	 Identify 3D shapes from 2D images Calculate missing lengths and angles using known facts 	 Know that a whole number can be written as a fraction, e.g. 2/2 etc. Know that 1½ can be written as 3/2 etc. Convert any improper fraction to a mixed fraction and vice versa 	 Know that volume is measured in cm³ and m³ Use cubes to calculate the volume of a given shape Use water and measuring equipment to calculate the capacity of a range of containers Express a distance of more than 1km in m Express a distance of more than 1 cm in mm Express a mass of more than 1kg in g Express an amount of more than 11 in ml 	 Compare information in line graphs to answer questions Solve addition problems using information in line graphs to answer questions Solve difference problems using information in line graphs to answer questions 	and secure with their basic skills. Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in the Autumn and Spring terms. Analyse the results and use information to help focus the intervention and pre-teaching sessions, as needed, for the following term.		

Year 5: Spring 2

Week 1: Multiplication & Division

Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.

Spring 2: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Spring 2: Week 1						
Objective: Multiplication & Division	Multiply o and 1000	Aultiply and divide whole numbers and those involving decimals by 10, 100 and 1000.					
Multiply the following numbers by 1 100 or 1000				Divide the following no or 100	-	10, 100	
231 x 10)			542 ÷ 10			
27.4 x 10	C			234.7 ÷ 10			
238 x 10	0			3289 ÷ 100			
2.52 x 10	0			345.12 ÷ 100			
218 x 100	00			6721 ÷ 1000			
34.123 x 10	000			6212.8 ÷ 1000			
32.1 x 100	00			3.123 ÷100			
237.32 x 1	00			3.12 ÷ 10			

Spring 2: Week 1: Practice and Consolidation

Multiplication & Division: Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.

	aching quence	Oral and Mental Activities Examples:	Pencil Examp		aper A	ctivities	5				
A A	Multiply any number by 10. Multiply any	 There is a need to ensure that levels of understanding 		X 10	X 100	X 1000			÷ 10	÷ 100	÷ 1000
	number by 100. Multiply any	about place value are good enough	34					5281			
	number by 1000.	to show pupils the quick method of	126					6721			
	Divide any number by 10.	multiplying and dividing by 10, 100	2371					9014			
	Divide any number by 100.	and 1000.Work on rapid	2187					7812			
>	Divide any number by	responses to multiplying and	271					891			
	1000.	dividing by 10, in the first instance.	Multiply	y by 10;	100 and	1000					
		 Pupils sit in groups of 4 to 6 and respond very 	23.135	25.	152	87.26	1	136.25	57 23	3.11	289.12
		rapidly to a given number by	Divide k	oy 10, 10)0 and 1	000					
		multiplying by 10, then 100 and finally 1000. They then divide by 10, 100 and 1000.	67.12	42.16	5 423	5.125	6	7.21	95.32	56.17	91.34

Spring 2: Week 1: Mastering this Objective – Deeper Understanding

Multiplication & Division: Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.

Teaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:					
 Multiply any number by 10. Multiply any number by 100 Multiply any number by 1000. Divide any number by 10. Divide any number by 100 Divide any number by 100 	Very rapidly multiply the following by 10. 32.3 45.6 176 23 349.23 1.678 Now do the same by very rapidly multiplying by 100: 23.12 672.12 98 12.56 23.67 Now, divide these by 10 very rapidly: 245 15,23 351.34 267.23 1.56	At the school concert there were 200 seats. The tickets were all sold and the school collected £2,400 for them. Find a quick way of working out how much each ticket cost. The shopkeeper announced that he had just received a special delivery of the new Wonka chocolate bar. He sold all his 2000 bars within the hour. He added up the money he took for them and it came to £2400. Find a quick way of finding out how much each bar cost.				
1000.	If you know how to multiply by 10, how can you go about multiplying by multiples of 10? Look at this example: 234×20 You know $234 \times 10 = 2340$ then multiply $2340 \times 2 = 4680$ Now complete these: 347×30 379×40 161×30 563×20 432×50 283×30 671×20 523×60 116×40	Very rapidly divide the following by 100. 32.3 45.6 176 23 349.23 1.678 Now do the same by very rapidly dividing by 1000: 102.56 23.67 123.12 672.12 98 102.56 23.67 Now, multiply these by 10 very rapidly: 2.45 15,23 351.34 267.23 1.56				

Spring 2: Week 1: Working at greater depth

Multiplication & Division: Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.

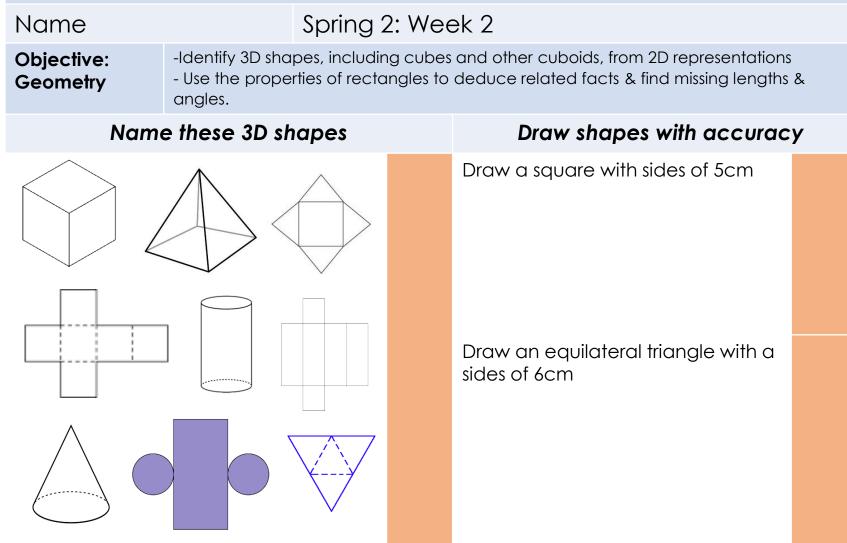
Teaching Sequence	Activities for pupils working at greater o	lepth:
 Multiply any number by 10. Multiply any number by 100. Multiply any number by 1000. Divide any number by 10. Divide any number by 100. Divide any number by 100. 	At a recent music festival the organisers sold exactly 4000 tickets. The money they collected from the tickets was £104,000. How much did each ticket cost. Did you work out a quick way of doing this? In addition each person spent on average £24.89 on food and souvenir items. How much money was collected for food and souvenirs? The festival cost £154,000 to put on, including food and souvenirs. Did the festival make a profit? Show your workings.	A new football stadium is being built. The seating is arranged in blocks of 100. There are 4 sides to the stadium (North Stand; East Stand; South Stand and West Stand). The North Stand will have 36 blocks of 100; the East Stand will have 48 blocks of 100; the South Stand will have 54 blocks of 100; and the West Stand will have 19 blocks of 100. How many seats will the stadium have in total.
1000.	10 gymnastic competitors wanted time on the competition floor before the final started. They had 4 hours and 40 minutes before the floor was closed. How much time was each allocated on the floor before the final started?A footballer touches the ball every 100 seconds. If s/he is playing for 90 minutes, how many times will they touch the ball?	For every block of 100 tickets in the West Stand the football club receives £3,665. How much will each West Stand ticket cost? How much will the club get if the West Stand is full? For every block of 100 tickets in the South Stand the football club receives £4,865. How much will each South Stand ticket cost? How much will the club get if the South Stand is full?

Spring 2: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.	Me	My Teacher
Can you divide any 2, 3, 4, 5 or 6-digit number by 1000?	1	
Can you divide any 2, 3, 4, 5 or 6-digit number by 100?		
Can you divide any 2, 3, 4, 5 or 6-digit number by 10?		
Can you multiply any 2, 3, 4, 5 or 6-digit number by 10	000š	
Can you multiply any 2, 3, 4, 5 or 6-digit number by	100\$	
Can you multiply any 2, 3, 4, 5 or 6-digit number by	/ 10?	

Year 5: Spring 2


Week 2: Geometry

-Identify 3D shapes, including cubes and other cuboids, from 2D representations

- Use the properties of rectangles to deduce related facts & find missing lengths & angles.

Spring 2: Week 2: Pre-Learning Task

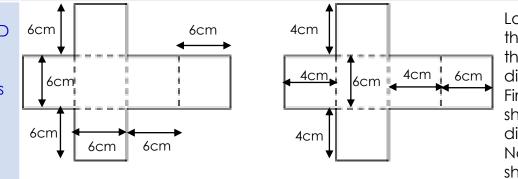
The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Spring 2: Week 2: Practice and Consolidation

Geometry: -Identify 3D shapes, including cubes and other cuboids, from 2D representations - Use the properties of rectangles to deduce related facts & find missing lengths & angles.

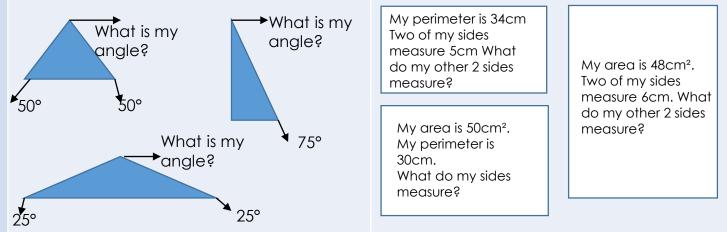
	aching quence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
~	Identify 3D shapes from 2D images Calculate missing lengths and angles using known facts	 Remind pupils of the learning already covered in previous years about 2D and 3D shapes. Use 3D shapes with pupils and ensure that they know the names of each of the 3D shapes. 	Look at these nets, make a drawing of their equivalent 3D shapes:
		 Look at a range of nets and remind pupils of the terms associated with nets and 3D shapes. 	Draw a number of squares that have the following sides: 10cm 5cm 15cm 8cm Ensure that all angles are very accurate.
		 Remind pupils about the learning covered in Autumn1 about drawing angles and using a protractor. Help pupils to set out and draw angles very accurately. 	 Draw a rectangle that has 2 sides of 10cm and two sides of 8cm. Draw an equilateral triangle that has sides of 10cm. Draw a right-angled triangle that has one side of 6cm and another side of 8cm. Draw a triangle that has one side of 10cm; one angle of 45° and one angle of 60°. Draw the following angles: 65°; 80°; 110°.

Spring 2: Week 2: Mastering this Objective – Deeper Understanding

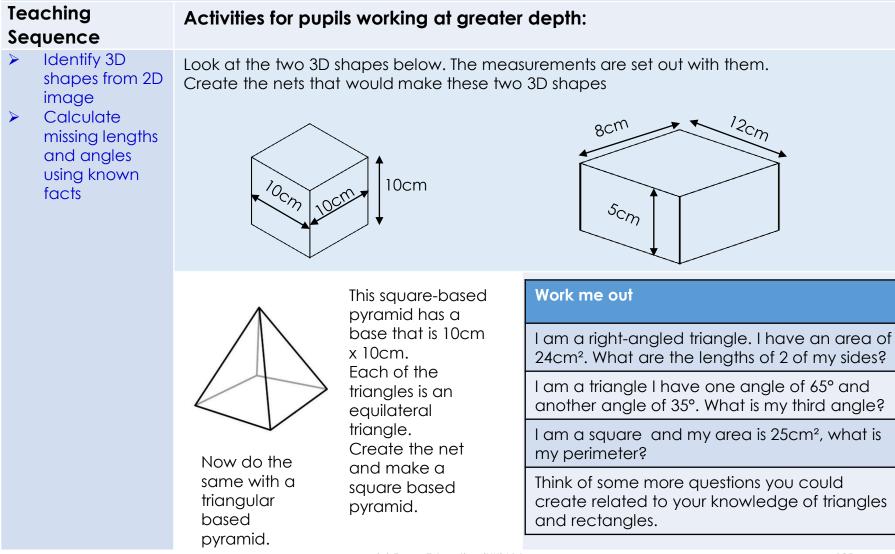

Geometry: -Identify 3D shapes, including cubes and other cuboids, from 2D representations - Use the properties of rectangles to deduce related facts & find missing lengths & angles.

Teaching Sequence

facts


If pupils have mastered this objective they will be able to complete these activities independently:

Look carefully at each of these two nets. Although they look similar they make different 3D shapes. Firstly, make up the two shapes shown following the dimensions as set out. Name them, in relation to 3D shapes.


Knowing what you already know about triangles, work out the missing angles.

Knowing what you know about rectangles, work out the following sides.

Spring 2: Week 2: Working at greater depth

Geometry: -Identify 3D shapes, including cubes and other cuboids, from 2D representations - Use the properties of rectangles to deduce related facts & find missing lengths & angles.

Spring 2: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry: -Identify 3D shapes, including cubes and other cuboids, from 2D representations - Use the properties of rectangles to deduce related facts & find missing lengths & angles.	Me	My Teacher
Can you draw a given angle using a protractor and label it appropriately?	4	
Can you draw a triangle to a given set of angles and sides?		
Can you draw an isosceles triangle accurately given the length of side and the base?		
Can you draw a right-angled triangle when given the lengths of sides?		
Can you draw an equilateral triangle with a given length	ŀŚ	
Can you draw a rectangle accurately having been given the length and breadth?		
Can you draw a square accurately having been given the length of the side?	ר	
Can you recognise 3D shapes from their nets?		

Year 5: Spring 2

Week 3: Fractions

Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements.

Spring 2: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Spring 2: Week 3					
Objective: Fractions	•	cognise mixed numbers and improper fractions and convert from one m to the other and write mathematical statements.					
Write <u>9</u> 4 as a mixed nur	nber.		How many ¼ are in 3¾?	e there			
Write <u>12</u> 5 as a mixed nur	mber.		How many ⅓ are in 3¾?	e there			
Write <u>17</u> 6 as a mixed nur	nber.		How many 1/10 c there in 33/10?	re			
Write <u>19</u> 5 as a mixed nur	nber.		How many 1/3 ar there in 32/3?	Ге			

Spring 2: Week 3: Practice and Consolidation

Fractions: Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements.

<u>20</u> 7				
9 <u>2</u> 5				
rts Write as mixed numbers:				
5				
es				
S				
e				

Spring 2: Week 3: Mastering this Objective - Deeper Understanding

Fractions: Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements.

TeachingIf pupils have mastered this objective they will be able to complete these activities independently:				
 Know that a whole number can be written as a fraction, e.g. 2/2 etc. Know that 1½ 	Convert the following sets of improper fractions to mixed fractions and then order them putting the highest value first: $\frac{12}{5} \frac{7}{2} \frac{8}{3} \frac{19}{5} \frac{22}{3} \frac{17}{8} \frac{21}{4} \frac{30}{7}$	Complete the following table: Mixed Improper 37/8 <u>134</u> 7		
fraction to a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7³/4 152 9		
mixed fraction and vice versa	Use one of the following signs to complete these sentences $(<; >; =)$ $3\frac{1}{8}$ $\frac{17}{8}$ $\frac{17}{8}$ $\frac{29}{4}$ $\frac{3}{8}$ $\frac{75}{8}$ Now create 2 of your own for your friends to solve.	 Turn 33/5 into an improper fraction and then find half of 33/5. Turn 33/7 into an improper fraction and then find half of 33/7. Turn 93/9 into an improper fraction and then find half of 93/9. Turn 166/7 into an improper fraction and then find half of 166/7. 		

Spring 2: Week 3: Working at greater depth

Fractions: Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements.

Teaching Sequence	depth:	
 Know that a whole number can be written as a fraction, e.g. 2/2 etc. Know that 1½ can be written as 3/2 etc. Convert any improper fraction to a 	Taxi JourneyA taxi driver charges 10p for every ¼Km he takes his passenger. How much will a journey of 3¾ cost?What about a journey of 4½Km? What about a journey of 6¼Km?Make up some other journeys for your 	 Wedding Ribbon A dressmaker wants to buy special ribbon for a wedding dress. For every ¼ of a metre the ribbon costs £2.50. The dressmaker wants 4¾ metres. How much will the ribbon cost? What if she wanted to buy 6½metres?
mixed fraction and vice versa	 Pizza Delivery 10 children share some pizzas. They each get % of one pizza and there were 2 pieces left over. How many pizzas did they have delivered? On another day 11 children shared some pizzas. Each child got 5/6 of a whole pizza and 	Moving Sand Ahmet is given the task of moving sand from one place to another. His bucket holds 6/7Kg. He has to move 102/7Kg in total. How many journeys will Ahmet have to make to move all the sand? What if his bucket held 11/7Kg?
	there was 1 piece left over. How many pizzas were delivered this time?	

Spring 2: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Fractions: Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements.	Me	My Teacher
Can you convert a mixed fraction into an improper fraction?	1	
Can you convert an improper fraction into a mixed fraction?		
Do you know that a whole number can be written as 2/2 or 4/4, etc.?		
Do you know what is meant by the term improper fraction?		
Do you know what is meant by the term mixed fraction?		

Year 5: Spring 2

Week 4: Measures

- Estimate volume (e.g. using 1 cm³ blocks to build cubes, including cuboids) & capacity (e.g. using water).

- Convert between different units of metric measure (e.g. km/m; cm/m; cm/mm; g/kg; l/ml).

Spring 2: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name Spring		ng 2: Week 4			
Objective: Measures	 Estimate volume (e.g. using 1 cm³ blocks to build cubes, including cuboids) & capacity (e.g. using water). Convert between different units of metric measure (e.g. km/m; cm/m; cm/mm; g/kg; l/ml). 				
<text></text>			How many centimetres in 2m?		
		How many metres in 6 kilograms?	metres in 6		
			How many grams in 2 kilograms?		
			How many millilitres in 2 litres?		

Spring 2: Week 4: Practice and Consolidation

Measures: - Estimate volume (e.g. using 1 cm³ blocks to build cubes, including cuboids) & capacity (e.g. using water).

- Convert between different units of metric measure (e.g. km/m; cm/m; cm/mm; g/kg; l/ml).

	iching quence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
A A A	Know that volume is measured in cm ³ and m ³ Use cubes to calculate the volume of a given shape Use water and measuring	 Fill a container with either pieces of lego or unifix blocks or cm. cubes. Explain that when trying to determine the volume of a space the measures are made in cm³ or m³ - 	Find different size small boxes. Fill the boxes with cm. cubes. Work out how many cm cubes are required for each box and then record as that number with cm ³ symbol to follow.
À	equipment to calculate the capacity of a range of containers Express a distance of more	 the term being cubed. Use cm³ blocks to fill a small box and get pupils to work out how many cm³ are required. Move on to show how 	 Find volume even more accurately by multiplying the length x breadth x height. Find the measurement of the following: A box that is 20 cm by 20 cm and is 15 cm high. A cupboard that is 100 cm long; 25 cm wide and 80 cm high.
AAA	than 1km in m Express a distance of more than 1cm in mm Express a mass of more than 1kg in g Express an amount of more than 11 in ml	 ore measured by length x breadth x height. Remind pupils of how many metres in a Km; cm in a metre; grams in Kg and ml in litres. Help pupils to convert 	 Change these measurements as directed: How many metres in 2Km? How many grams in 1.2Kg? How many cm in 4m 50cm ? How many ml in 4 litres? If a runner runs for 4Km and 500m how many metres will s/he have run altogether? Express 5600m in Km.
			(c) Focus Education (UK) Ltd 135

Spring 2: Week 4: Mastering this Objective – Deeper Understanding

Measures: - Estimate volume (e.g. using 1 cm³ blocks to build cubes, including cuboids) & capacity (e.g. using water).

- Convert between different units of metric measure (e.g. km/m; cm/m; cm/mm; g/kg; I/ml).

Teaching If pupils have mastered this objective they will be able to complete these Sequence activities independently: Know that ≻ To fill a bath it takes 150 litres of water. Tour de Britain volume is You could have 3 showers with that amount The cycling tour had many stages. The measured in cm³ distances are set out below: of water. and m³ Use cubes to \geq Stage Distance calculate the Dave likes baths and has 4 each week. volume of a Helen prefers showers and has one every 18Km 200m given shape day. Use water and \geq 2 15Km 300m measuring Which one uses most water in a week and 3 equipment to 10Km what is the difference? calculate the 8Km 500m 4 capacity of a range of Which is more? (some may be equal) 5 13Km 600m containers 1km or 1200 metres Express a \geq 22Km 6 2kg or 300 grams distance of more • 5.5cm or 50mm than 1km in m What is the difference in metres between Express a • 1.2 Km or 120cms. \succ Stage 1 and Stage 3? distance of more • 1000ml or 1 litre How far is it in metres between Stages 2 and than 1cm in mm • 5.3m or 535cm 42 Express a mass of ≻ 3000gms or 1.3 Kg more than 1kg in In metres, how much further is Stage 6 than • 4 litres or 500 ml then next longest stage? 6050ams or 6.5 Ka Express an \geq Put the stages in order, according to their • 7100m or 7.5Km amount of more distance in metres (longest first). than 11 in ml 250gms or 0.2 Kg

Spring 2: Week 4: Working at greater depth

Measures: - Estimate volume (e.g. using 1 cm³ blocks to build cubes, including cuboids) & capacity (e.g. using water).

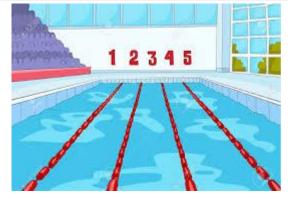
- Convert between different units of metric measure (e.g. km/m; cm/m; cm/mm; g/kg; l/ml).

Teaching Sequence

Activities for pupils working at greater depth:

Know that volume is measured in cm³ and m³

 Use cubes to calculate the volume of a given shape


- Use water and measuring equipment to calculate the capacity of a range of containers
- Express a distance of more than 1km in m
- Express a distance of more than 1 cm in mm
- Express a mass of more than 1kg in g
- Express an amount of more than 11 in ml

Sponsored Walk Ashley did a sponsored walk. She walked for 5Km and 200m non stop. She was sponsored at a rate of 5p per metre for this part of her walk. How much money did she raise from this part of her walk?

The second stage of her walk was uphill. She discovered that for this part she lost 250grams in weight for every 500 metres she walked. The second stage was 4Km long. Before she started the second stage she weighed 58Kg.

How much did she weigh after the uphill climb?

The third stage was a walk along a coastline. For this part of her sponsorship she raised £360 at a rate of 4p per metre. How far did she walk during this third stage? Altogether she raised £2,100. How much did she raise for the second stage.

An Olympic size pool holds 2,500,000 litres of water and measures 50m x 25m x 2m.

This works out to be 1000 litres for every 1m³.

Work out how many litres of water is there is in a swimming pool which is 25m x 10m x 2m.

If it costs £2 per day to keep 100,000 litres of water clean, how much does it cost to keep an Olympic size pool clean?

How does it cost to keep the smaller pool clean?

Spring 2: Week 4: Assessment

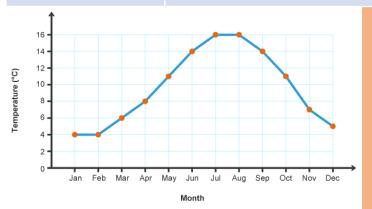
The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Measures: - Estimate volume (e.g. using 1 cm ³ blocks to build cubes, including cuboids) & capacity (e.g. using water). - Convert between different units of metric measure (e.g. km/m; cm/m; cm/mm; g/kg; l/ml).			My Teacher
Co	n you express an amount of more than 11 in ml	ŝ	
C	Can you express a weight of more than 1Kg in g	grams?	
	Can you express a distance of more than 1 cr	m in mm?	
	Can you express a distance of more than 1K	m in metres?	
	Can you use water to estimate and work of capacity of a given container?	ut the	
	Can you use cubes to work out the volume shape?	e of a given	
	Do you know that volume is measured in	cm³ or m³?	

Year 5: Spring 2

Week 5: Statistics

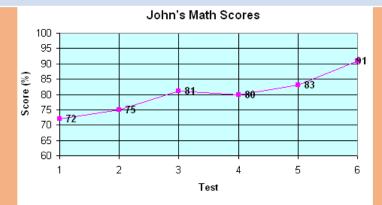
Solve comparison, addition and difference problems using information presented in a line graph


Spring 2: Week 5: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name

Spring 2: Week 5


Objective: Statistics Solve comparison, addition and difference problems using information presented in a line graph

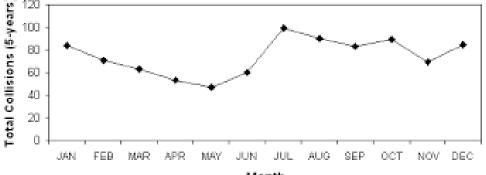
Look at the information on the graph about average temperature each month and answer the following questions:

How many months is the average temperature more than 10°?

What is the difference between the average temperature in January and July?

Look at the line graph which gives John's maths score over 6 tests.

In how many tests did John score 80 or more?


What is the difference between John's best and worst scores in the six tests?

Spring 2: Week 5: Practice and Consolidation

Statistics: Solve comparison, addition and difference problems using information presented in a line graph

Teaching Sequence		Oral and Mental Activities Examples:	Penci Exam	
	Compare information in line graphs to answer questions Solve addition problems using information in line graphs to answer questions Solve difference problems using information in line graphs to answer questions	 Revise the work done previously on bar charts; pictograms and tables. Talk about suitability of presentation of information. Talk to pupils about collecting information and collating it. Remind pupils about keeping a tally as part of collecting information. Introduce the idea of a line graph and 	This line accide for eve What i Put the each n Resea	
		explain where it can be more useful than other forms of representations.	during Having You ne suitabl araph	

Pencil and Paper Activities Examples:

Month

This line graph tells you about accidents that occur in an accident hot spot over a five year period. It presents information for every month during the 5 years.

What is the difference between May and July? Put the months in order according to the number of collisions in each month (highest month first).

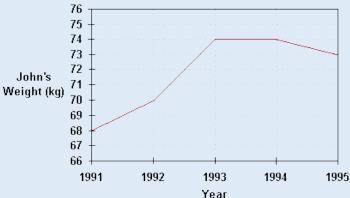
Research to find the average monthly temperature in London during the last full year.

Having collected the information create your own line graph. You need to think about your axes, your scale on the axes, a suitable title and think of 5 questions you could ask related to your graph.

Spring 2: Week 5: Mastering this Objective – Deeper Understanding

Statistics: Solve comparison, addition and difference problems using information presented in a line graph

Teaching Sequence


If pupils have mastered this objective they will be able to complete these activities independently:

- Compare information in line graphs to answer questions
- Solve addition problems using information in line graphs to answer questions
- Solve difference problems using information in line graphs to answer questions

The line graph shows the number of people watching TV between 6:30am and 9:00am. The vertical axis is in millions. At what time did TV viewing peak? Why would there be a sharp decline in viewers after 8:45am? Why would there be a sharp increase in viewers between 7:45am and 8:15am?

Add another five questions about this graph that you can ask your friends.

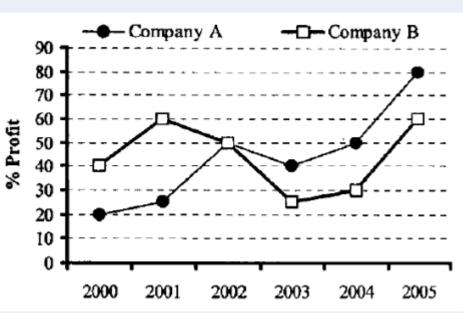
This line graph shows John's weight over a four year period.

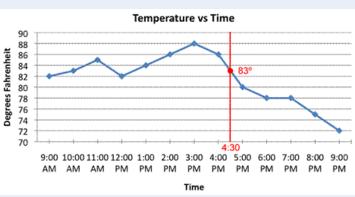
During which two years was John at his heaviest?

Why do you think John's weight fell between 1994 and 1995? How old do you think John was in 1991?

During which two years did John's weight increase the most?

Now think of other questions you could ask your friends.


Spring 2: Week 5: Working at greater depth


Statistics: Solve comparison, addition and difference problems using information presented in a line graph

Teaching Sequence

Activities for pupils working at greater depth:

- Compare information in line graphs to answer questions
- Solve addition problems using information in line graphs to answer questions
- Solve difference problems using information in line graphs to answer questions

During which year did both companies make the same percentage of profit? When was the percentage of profit the two companies made furthest apart? Which company has improved its performance the most? Why can you say this?

Why should both companies feel confident about the percentage of profit they will make in 2006?

Create a number of questions to ask your friends about this line graph.

Some must be associated with difference and additions.

What do you think the temperature is likely to be at 4am? Give your reasons.

Why do you think there was such a sharp dip in temperature between 3pm and 6pm?

Spring 2: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Statistics: Solve comparison, addition and difference problems using information presented in a line graph	Me	My Teacher
Can you decide when information is best presented in a bar chart; line graph or table?		
Can you create your own line graph based on information you have collected and collated?		
Can you solve addition and subtraction problems presented to you in line graphs?		
Can you read, interpret and compare information presented in the form of a line graph?		
Can you present information you have collected in the form of a bar chart?		
Can you read and interpret information presented in a bar chart?		

Year 5: Spring 2

Week 6: Consolidate and Assess

- Start this week by revising the learning covered in the Autumn and Spring terms so as to ensure pupils are fluent and secure with their basic skills.
- Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in the Autumn and Spring terms.
- Analyse the results and use information to help focus the intervention and pre-teaching sessions, as needed, for the following term.

Year 5: Spring 2: Week 6

The focus of the consolidation should be the following aspects:

- Count on/back from a given number in steps of 100/1000/10,000/100,000 up to and beyond 500,000
- Read, write and order numbers to 500,000 and beyond
- Compare numbers to 500,000 and beyond
- Partition numbers to 500,000 and beyond
- Find powers of 10 more than a given number
- Read, write, order and compare decimal numbers up to 3dp
- Partition decimal numbers to 3dp
- Round decimals with 1 and 2dp to the nearest whole number
- Multiply and divide numbers mentally drawing upon known facts
- Multiply and divide any whole number by 10, 100, 1000 and multiply and divide any decimal number by 10 and 100
- Count on/back with positive and negative numbers, including through zero.
- Count on/back in fraction and decimal sequences? e.g. 2.5 or 1 1/2
- Round any number up to 500,000 and beyond to the nearest 10, 100, 1000, 10,000 and 100,000
- Add mentally a 4 digit number and 3 digit number e.g. 8,345 + 230)
- Subtract mentally any 3-digit number from a 4-digit number e.g. 8,345 230
- Find factors and factor pairs of each number up to 50 and beyond
- Find complements to 100 and 1000; £1.00 and £5.00; to 1 using 2dp
- Convert units of measurement (km and m; cm and m; cm and mm; gram and km, ml and L)
- · Mentally add and subtract tenths
- Although practise and consolidation should be on-going through each half term, during Week 6 there should be greater opportunity taken to check pupils' learning and understanding.
- Summative and Formative assessment procedures should help teachers gain a clear picture as to which pupils are at different stages, including mastery and greater depth.

WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6
4 Place Value	3 Fractions	4 Measures Time	4 Fractions Decimals	4 Addition & Subtraction	6 Multiplication & Division
Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit	Compare and order fractions whose denominators are all multiples of the same number.	Solve problems involving converting between units of time.	-Round decimals with two decimal places to the nearest whole number and to one decimal place. - Read, write, order and compare numbers with up to three decimal places.	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Recognise and use square numbers and cube numbers, and the notation for square ² and cubed ³ .
 Revise reading and writing numbers to 1000 Read all numbers from 1000 to 50,000 in numerals Read all numbers from 1000 to 1,000,000 in numerals Recognise the value of each digit up to 1,000,000 Know and use the terms: ones, tens, hundreds, ten thousands, hundred thousand and million correctly Partition any number up to 1,000,000 showing the value of each digit 	 Compare and order fractions with the same denominator. Compare and order fractions with denominators of 2, 4, 8. Compare and order fractions with denominators of 5, 10. Convert fractions with different denominators to have a common denominator. Order two different fractions with different are multiples of the same number. Order more than two different fractions with different fractions with different fractions with different are multiples of the same number. 	 Solve a range of problems involving all units of time 	 Round a number with two decimal places to the nearest whole number. Round a number with two decimal places to the nearest number with one decimal place. Given 3 numbers with three decimal places, place in order (smallest to largest and vice versa). Given 5 numbers with three decimal places, place in order (smallest to largest and vice versa). 	 Identify the number of steps in a problem Identify the operations to be used Solve problems and check accuracy using estimation and rounding to check reasonablenes s of answer 	 Know, by heart, the square of all numbers between 2 and 12. Know why a square number is called a square number by drawing squares Use the symbol ² accurately. Explain the relationship between the square of a number and the square root of a number. Knowing the square of a number, use the inverse to calculate the square root. Use the symbol ³ accurately.

Year 5: Summer 1

Week 1: Place Value

Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit

Summer 1: Week 1: Pre-Learning Task

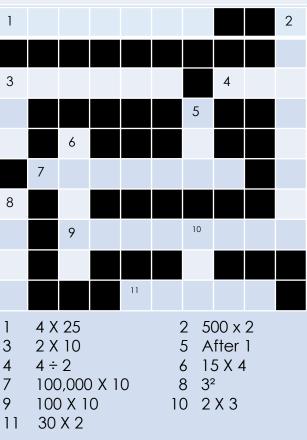
The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Summe	er: We	ek 1						
Objective: Place Value		Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit								
Write these	numbers in	numerals	5	Write these	numbers in word	ls				
Two thousand, fou hundred and fourteen	r			12,461						
Thirteen thousand, three hundred and sixty-four				123,879						
Two hundred and four thousand, one hundred and sixteen				15,247						
Four hundred thousand, three hundred and eighty- three				998,392						
Sixty thousand, fou hundred and five	r			719,709						

Summer 1: Week 1: Practice and Consolidation

Place Value: Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit

	aching quence	Oral and Mental Activities Examples:		cil and Pape mples:	er Activities		
A A A A A	Revise reading and writing numbers to 1000 Read all numbers from 1000 to 50,000 in numerals Read all numbers from 1000 to 1,000,000 in numerals Recognise the value of each digit up to 1,000,000 Know and use the	 Start by revising reading and writing numbers to 1000, 10,000, and 100,000. Remind pupils of place value. Chant in thousands beyond 100,000 and 100,000 up to 1,000,000. Half the class are given numbers in words and the other half have numbers. In turn a pupil with the words stands up from one side and 		e the number to	that comes c 999,999 179,999 23,999 200,000 150,000 234,599	lirectly before of the line of	and after the
Å	terms: ones, tens, hundreds, ten thousands, hundred thousand and million correctly Partition any number up to 1,000,000 showing the value of each digit	 with the words stands up from one side and the person, on the other side, with the corresponding number has to react as quickly as possible. In small groups pupils play a bingo style game or a snap game involving words and numbers. 	• 15 • 21	,001 ,921 ,901	ers in words:	Partition these Example 2,4 (2,000,000 + 4 + 9,000 + 100 • 3,245,912 • 7,912,333 • 9,912,345 • 890,002	459,123 100,000 + 50,000 + 20 + 3)


Summer 1: Week 1: Mastering this Objective – Deeper Understanding

Place Value: Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit

Teaching Sequence

Revise reading and writing numbers to 1000

- Read all numbers from 1000 to 50,000 in numerals
- Read all numbers from 1000 to 1,000,000 in numerals
- Recognise the value of each digit up to 1,000,000
- Know and use the terms: ones, tens, hundreds, ten thousands, hundred thousand and million correctly
 Partition any number up to 1,000,000 showing the value of each digit

Be aware that some numbers appear more than once.

If pupils have mastered this objective they will be able to complete these activities independently:

Take a card with numbers written as words: 500,000 to a million and have another set of cards 1 to 499,999. Select a card from the first set and take away the number selected from the second set.

Match the numbers to the words:

230,945	Six hundred and twenty three thousand, nine hundred and one
623,901	Seven hundred and eighty three thousand and seven
783,007	Two hundred and thirty thousand, nine hundred and forty five.

Write these numbers in words:

2	4	7	2	9	1	9
1	3	4	7	8	9	2

Now write some more for your friends to complete.

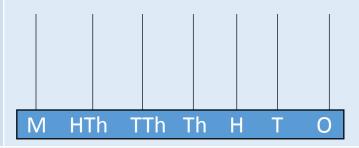
Summer 1: Week 1: Working at greater depth

Place Value: Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit

Teaching Sequence

- **Revise reading** and writing numbers to 1000
- Read all numbers \geq from 1000 to 50,000 in numerals
- Read all numbers \geq from 1000 to 1.000.000 in numerals
- Recognise the >value of each digit up to 1,000,000
- Know and use the \succ terms: ones, tens, hundreds, ten thousands, hundred thousand and million correctly Partition any \succ number up to 1,000,000 showing

 - the value of each


digit

Activities for pupils working at greater depth:

Make up 7-digit numbers, with the numbers shown. The first digit has to be a 1. Make a pair of 7-digit numbers which are less than 100,000 apart. Make a pair of 7-digit numbers that are more than 500,000 apart. Make up a pair of 7-digit numbers that are less than 50,000 apart. Now think up some for yourself to give to your friends. Take any 7 cards with a single digit on it. Start with the cards shown above. Make up as many 7-digit numbers as you can. Write five of them out in words. Choose another 7 cards with different digits on. How many numbers can you make? What do you notice?

Look at the abacus below. You have 25 beads to place where you wish. If you have to put a bead in each of the pegs what are the smallest and largest numbers you can make? Now make up more to a given specification.

Write the next two numbers in this sequence:

- One million, one hundred and twenty thousand, four hundred and thirty five:
- 1,020,435;
- Nine hundred and twenty thousand, four hundred and thirty five;
- 820,435

Summer 1: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

	ead, write, order and compare numbers to at least determine the value of each digit	Ме	My Teacher				
-	ou partition any number up to 1,000,000 showing the of each digit?	5					
thou	ou know and use terms: units; tens, hundreds, sands, ten thousands, hundred thousands and one on correctly?						
	n you recognise the value of each digit up to)0,000?						
Co	an you read and write numbers to 1,000,000?						
C	Can you read and write numbers to 50,000?						
	Can you read and write numbers to: 1000 and then to 10,000?						

Year 5: Summer 1

Week 2: Fractions

Compare and order fractions whose denominators are all multiples of the same number.

Summer 1: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	e	Sur	nmer 1: V	Week 2				
Objecti Fraction		Compare and ord same number.	ler fraction:	s whose de	nominato	ors are all multiples c	of the	
	Whic	ch is the larger?		Complete the following				
<u>7</u> 16	<u>3</u> 8			<u>7</u> 8	=	16		
<u>7</u> 9	<u>2</u> 3			<u>3</u> 4	=	12		
<u>3</u> 4	<u>11</u> 16			<u>3</u> 8	=	16		
<u>1</u> 5	<u>4</u> 15			<u>1</u> 5	=	10		

Summer 1: Week 2: Practice and Consolidation

Fractions: Compare and order fractions whose denominators are all multiples of the same number.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
 Compare and order fractions with the same denominator. Compare and order fractions with denominate of 2, 4, 8. 	 Help pupils to make sets of multiples, eg, 2, 4, 8 and 16; 3, 6, 9 and 12. Use two metre sticks, one with 8 divisions and one with 4 	Multiples of 2 Multiples of 3 Multiples of 5 Some numbers will appear in more than one set.
 Compare and order fractions with denominate of 5, 10. Convert fraction with different denominators to 	 the same as two fourths. Then do the same with 2 matro sticks 	Complete the following: $\frac{1}{2}$ 4 8 16 $\frac{2}{3}$ 6 9 12
 have a common denominator. Order two different fraction with different denominators th are multiples of the same numbe 	 with divisions of three and six. Show pupils how to change a fraction in thirds to one with sixths or ninths. 	Find two fractions with different denominators which are equivalent to the following fractions: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
Order more than two different fractions with different denominators th are multiples of the same number		Within each pair of fractions which is the larger? $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Summer 1: Week 2: Mastering this Objective – Deeper Understanding

Fractions: Compare and order fractions whose denominators are all multiples of the same number.

Teaching Sequence

>

>

>

>

If pupils have mastered this objective they will be able to complete these activities independently:

Compare and order fractions with the same	Make thes					Put at least 3 multiples into the following boxes.			
denominator. Compare and order fractions	10	> 5	;	3	>	9	Multiples of 2	Multiples of 3	Multiples of 5
with denominators of 2, 4, 8. Compare and									
order fractions with denominators of 5, 10. Convert fractions with different	6 >	12		8	>	16	Make up a pa each set of mu	ir of equal fracti ultiples.	ions from
denominators to have a common denominator.	Find a frac shown but					Join the fractic same value:	ons to the one th	nat is of the	
Order two different fractions with different denominators that	<u>3</u> 8	<u>2</u> 3	<u>5</u> 6	<u>1</u> 3	<u>3</u> 4		4 1	<u>2</u> 6 3	
are multiples of the same number. Order more than	Now find of the one				er tha	$\frac{1}{3}$	<u>3</u> 30		
two different fractions with different	<u>3</u> 8		_	1	<u>3</u>		<u> </u> 5	<u>2</u> 8	
denominators that are multiples of the same number.	8 How do ya	2 3 ou know	<u>5</u> 6 that tl	3 hey are	4 e larg	ier?	<u>1</u> 10	<u>2</u> 10	

Summer 1: Week 2: Working at greater depth

Fractions: Compare and order fractions whose denominators are all multiples of the same number.

	aching quence	Activi	ties for pupi	s worl	king a	t greater o	depth:
AAAA	Compare and order fractions with the same denominator. Compare and order fractions with denominators of 2, 4, 8. Compare and order fractions with denominators of 5, 10. Convert fractions with different	Write d denom denom Work o Explain	ninator Fun lown two frac ninator of one ninator of the ut which is the your reasonir et up another to complete.	is a mu other. e largen ng. five exe	r fractio	of the	Fraction Problems Tom ate 11/16 of his pizza and Helen ate 7/8 of hers. Which of the two had more pizza? Hannah played for 2/3 of the match and Jemma played for 5/6 of the match. Who played the longer? Lizzie managed to complete ³ / ₄ of her exam paper and Tony manged 7/8. Who did the most?
	denominators to have a common denominator.	More o	or Less				How much more?
	Order two different fractions with different denominators that are multiples of	What is	t these pairs c s the differenc and <u>7</u>	e betw		nem?	How much more do I need to add to 3/16 to make it 1/4? Now look at these:
≻	the same number. Order more than two different	<u>2</u> 3	and <u>7</u> 9	<u>2</u> 3		12	How much more:
	fractions with different denominators that	<u>5</u> 6	and <u>11</u> 12	<u>3</u> 8	and	<u>5</u> 16	$\frac{2}{3} \longrightarrow \frac{7}{9}$
	are multiples of the same number.	<u>1</u> 3	and <u>1</u> 6	<u>1</u> 4	and	<u>3</u> 16	$\frac{5}{6} \longrightarrow \frac{11}{12}$

Summer 1: Week 2: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

es of the same number.	Me	My Teacher
Can you order more than 2 different fractions with different denominators that are multiples of the same number?		
Can you order 2 different fractions with different denominators that are multiples of the same number?		
Do you know how to convert fractions with different denominators into a common denominator?		
Can you compare and order fractions with denominators 5 and 10?		
Can you compare and order fractions with denominators of 2, 4 and 8?		
Can you compare and order fractions with the same denominator?		

Year 5: Summer 1

Week 3: Measures: Time

Solve problems involving converting between units of time.

Summer 1: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Summ	Summer 1: Week 3						
Objective: MeasuresTime: Solve problems involving converting between units of time.									
How	many m	inutes?		How many	days?				
2 hours				One week					
1 hour 15 min			Month of June						
6 hours 10 mir	6 hours 10 minutes			In 2016					
4 hours 25 min	outes			In 2015					
8 hours				Between 1st of December and					
3 hours 7 minutes				January 3rd					
5 hours 19 min	5 hours 19 minutes			Between April 1 st and May 17th					
3 hours 52 mir	outes								

Summer 1: Week 3: Practice and Consolidation

Measures: Time: Solve problems involving converting between units of time.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:						
 Solve range of problems involving all units of time 	 Much of this unit is revising learning covered previously in both Years 4 and 5. 	Put these times in a 24 hour clock format: 2.30pm; 3.15am; 7.15am; 10pm; 2.13pm; 5.18am 8.15am; 10.17am; 12noon; 4.15pm; 8.12am; 11.12pm						
	 Revisit the number of seconds in a minute; the number of minutes in an hour; days of the week; months of the year. 	of seconds in a minute; the number of minutes in an hour; days of the of seconds in a minute; the number of minutes in an hour; days of the						
	 Discuss a leap year. Look at different formats of telling the time: 24 hour clock; using am and pm; digital and analogue; Roman 	Here are 3 clock faces showing the time in the afternoon. Using a 24 hour system tell the time for each one.						
	numerals, etc.	24 hour Am/pm Analogue						
		05:13						
		7.13pm						
		Half past six AM						

Summer 1: Week 3: Mastering this Objective – Deeper Understanding

Measures: Time: Solve problems involving converting between units of time.

Teaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:						
Solve a range of problems involving all units of time	 Put these lengths of time in order starting with the longest time. 105 minutes 1 hour 51 minutes 6360 seconds 6945 seconds 1 hour 45 minutes 129 minutes 1 hour 55 minutes 	The theatre production finished at 21:15 and the play lasted for 2 hours and 15 minutes. What time did the production start? Answer in a 24-hour format. Andrew was going to the theatre to see this production and he took a train. He left home 105 minutes before the production started. Again, in a 24 hour clock format, what time did Andrew leave his home?					
	 Which is the most sensible way to record the following: in seconds; in minutes; in hours or in days? Some may have 2 sensible ways. 5km run 100 metres dash A plane journey to Spain Round the world sailing race A football match Time spent in school during a typical day Eat lunch Take a photograph 	Look at these sequences of time: write in the missing time in a 24 clock system. Quarter past six; 6.30am; 06:45; Seven in the morning;; 7.30am. Ten at night; 21:45;; 9.15pm; nine at night. 1.30am; 03:00; half past four in the morning; ; 07:30					

Summer 1: Week 3: Working at greater depth

Measures: Time: Solve problems involving converting between units of time.

Teaching Sequence	Activities	for p	oupils	work	ing a	t gree	ater c	lepth:
Solve a range of problems involving all units of time	 Paris Holiday A person going on holiday lands at Paris airport at 10.45 hours. He left home at eight in the morning and spent 90 minutes in the airport before his plane took off. How many minutes was he in the air? How many minutes past between him leaving home and landing in Paris? 						Time Zones Sydney in Australia is 9 hours ahead of London; Dubai is 3 hours ahead and Turkey 2 hours ahead. New York is 5 hours behind and Rio de Janeiro is 4 hours behind London. Using a 24 hour clock system state what the time is in each of these cities or countries when it is the following times in London: 7 in the morning; 4 in the afternoon and 6 in the evening.	
								Look at the bus timetable: How many minutes does the first bus take between Newport and Chepstow?
	Newport	06:50		07:25	08:45	09:10	09:45	Look at the time the buses leave
	Underwood	07:00	07.25	07:41	08:55	09:19	09:53	Underwood. What is the greatest and
	Magor	07:11	07.41	07:51	09:04	09:31	10:02	smallest gap in minutes?
	Rogiet	07:18	07.59	07:59	09:11	09:38	10:11	In minutes, what is the time difference between the first bus that leaves Newport
	Caldicot	07:29	08.12	08:09	09:16	09:47	10:16	and the last bus that leaves Newport?
	Portskewett	07:33	08.15	08:14	09:20	09:53	10:21	Take 7 clock faces and show the time for
	Chepstow	07:45	08.30	08:30		10:05	10.40	the 7.25 bus that leaves Newport and

then for each of the stops for that bus.

Summer 1: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Measures: Time: Solve problems involving converting between units of time.	Me	My Teacher
Do you understand about time zones and how that impacts on different countries across the world?		
Can you convert between different ways of showing and telling the time?		
Can you read the time in a 24 hour clock format?		
Can you read the time in analogue using am and pm?		
Do you know which months have 30 days and which year has an extra day (leap year)?		
Do you know how many minutes in an hour and how many hours in a day?		
Do you know how many seconds in a minute?		

Year 5: Summer 1

Week 4: Fractions: Decimals

-Round decimals with two decimal places to the nearest whole number and to one decimal place.

- Read, write, order and compare numbers with up to three decimal places.

Summer 1: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Summer 1: Week 4				
Objective: Fractions	Decimals: -Round decimals with two decimal places to the nearest whole number and to one decimal place. - Read, write, order and compare numbers with up to three decimal places.				
	decimal numbers to hole number	Round these decima decimal place		oone	
6.25			0.15		
7.5			2.58		
8.1			1.25		
9.3			3.75		
11.1			6.83		
9.3			9.45		
6.9			10.75		
8.5			3.78		

Summer 1: Week 4: Practice and Consolidation

Fractions: Decimals: -Round decimals with two decimal places to the nearest whole number and to one decimal place.

- Read, write, order and compare numbers with up to three decimal places.

	aching quence	Oral and Mental Activities Examples:	Penci Exam	l and Pape ples:	r Activities			
A	Round a number with two decimal places to the nearest whole number. Round a number	 Remind pupils of the principles related to rounding. Explain that the same applies to rounding decimals. 	Round 23.14; 52.76	the following 16.43; 33.67	g numbers to 17. 52; 37.99	the nea 11.5; 21.5	irest whol 16.33; 56.77	e number: 267.01 113.56
	with two decimal places to the nearest number with one		Round place: 23.74;	the following	g numbers to 17. 58;) the nea 11.57;	16.33;	decimal 267.71
>	decimal place. Given 3 numbers with three decimal places,		52.796	33.627 ese in order (I	37.99	121.55	56.77	113.56
>	place in order (smallest to largest and vice versa). Given 5 numbers with three		1. 2. 3.	23.78 23. 45.89 17.	98 23.76	23.8 12.23	23.11 23 1.89 17. 128.7	68
	decimal places, place in order (smallest to largest and vice versa).	 Instant order methods. For example a group of 4 to 6 pupils could be given a number each and they have to organise themselves by highest first, etc. 	Twenty Sevent Sevent	hese as num / one point tw teen point fiv ty point zero point three t	wo three; e nine five			

Summer 1: Week 4: Mastering this Objective – Deeper Understanding

Fractions: Decimals: -Round decimals with two decimal places to the nearest whole number and to one decimal place.

- Read, write, order and compare numbers with up to three decimal places.

Teaching If pupils have mastered this objective they will be able to complete these Sequence activities independently: Round a number \succ Write down all the possible two decimal Complete this table: with two decimal place numbers that come between 15.1 Number Nearest places to the Nearest Nearest and 15.2. whole Tenth hundredth nearest whole number. 3.126 Write down all the possible two decimal Round a number \geq place numbers that come between 16.5 with two decimal 4.652 and 16.6. places to the nearest number 5.912 with one Write down all the possible two decimal decimal place. place numbers that come between 18.15 18.459 Given 3 numbers >and 19.2. 17,992 with three decimal places, 91.225 Write down the number that is one tenth place in order (smallest to more than 3.412. 11.002 largest and vice versa). Write down the number that is three \geq Given 5 numbers hundredths more than 3.236. with three Counting on in 0.2 write the next five decimal places, numbers after 3.135. Write down the number that is four place in order hundredths more than 2.166. (smallest to Counting back in 0.5 write down the five largest and vice numbers that come before 3,784 Write down the number that is one tenth versa). less than 3.003.

Summer 1: Week 4: Working at greater depth

Fractions: Decimals: -Round decimals with two decimal places to the nearest whole number and to one decimal place.

- Read, write, order and compare numbers with up to three decimal places.

	aching quence	Activities for pupils working at greater d	lepth:
	Round a number with two decimal places to the nearest whole number.	Rounding One decimal place numbers have been rounded to the nearest whole number.	3.7 is the 8 th number in the sequence and 3.5 was the 4 th in the sequence. What was the first number?
>	Round a number with two decimal places to the nearest number	Here they are: 48 72 67 89 91 120	8.92 is the 7 th number in the sequence; 8.44 is the 3 rd number in the sequence. What are the 2 nd and fifth numbers?
	with one decimal place. Given 3 numbers with three decimal places,	For each number put down all the possible one decimal numbers that they could have been in the first place.	11.75 is the 10 th number in the sequence; 10.4 is the 1 st in the sequence; 11.0 is the 5th in the sequence. What are the 2 nd and the 8 th numbers?
	place in order (smallest to largest and vice versa).	More Rounding Two decimal place numbers have been rounded to the nearest whole number.	A sequence of numbers goes up 0.1 then 0.2; then 0.3, and so on. Here is an example:
>	Given 5 numbers with three	Here they are:	2.3; 2.4; 2.6; 2.9; 3.3
	decimal places, place in order (smallest to largest and vice versa).	4962879992130For each number work out the highest and lowest numbers they could have been originally.	What is the 10 th number in the sequence that starts with 4.4? What is the 8 th number in the sequence that starts with 3.67?

Summer 1: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Fractions: Decimals: -Round decimals with two decimal places to the nearest whole number and to one decimal place. - Read, write, order and compare numbers with up to three decimal places.	Me	My Teacher
Can you create a sequence with decimal numbers with up to three decimal places?		
Can you compare decimal numbers with up to three decimal places?		
Can you write any decimal number with up to three decimal places?		
Can you read any decimal number with up to three decimal places?		
Can you round a two decimal place number to the nearest one decimal place number?		
Can you round a two decimal place number to the nearest whole number?		
Can you round a one decimal place number to the nearest whole number?		

Year 5: Summer 1

Week 5: Addition & Subtraction

Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Summer 1: Week 5: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Sum	mer 1: \	Week	5			
Objective: Addition & Subtraction		Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.					
John and Hele between them fewer than He How many swe and how man	len. eets has Helen		in Yorks 55 more only ha dentists	hildren visited hire in the m e than visited If of the num in March. any visited th	onth of May d the dentist nber that vis	y. This was t in April but ited the	
Henry V111 was born in 1491 and he lived for 56 years. In which year did he die?			altog 1290 rest a	ner has 3, ether. He oigs; 402 s re chicke ens has h	has 560 sheep ar ns. How i	cows; nd the	

Summer 1: Week 5: Practice and Consolidation

Addition & Subtraction: Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
 Identify the number of steps in a problem Identify the operations to be used Solve problems 	 Remind pupils about reading the questions very carefully and to look for key words. Remind them that they should apply formal methods of 	A busy office wanted to get an idea of how busy they were so they counted all the e-mails they had received in one week. There were three different people in the office who regularly received e-mails. The first received 2,350; the second received 150 more than the first and the third received double the amount received by the first and second person. How many emails were received in that week?
and check accuracy using estimation and rounding to check reasonableness of answer	 addition and subtraction when it comes to adding or subtracting. Try and link the questions with on- going learning such as the rainforests, etc. so as to make them more 	Three of London's special attractions reported that they had improved on the visitors they had on the previous month. In May, the London Eye had 300,789 paying visitors but this was up by 34,986 in June. In May, the National History Museum had 549,234 visitors but this had increased by 102,129 in June In May, the Tower of London had 257,983 visitors but this was up by 69,238 in June. How many visitors were there for all three attractions in June?
	meaningful to the pupils.	239,990 people travelled by train in July and August. 12,890 more travelled by train in July than in August. How many travelled by train in July and how travelled by train in August? How did you work this out?

Summer 1: Week 5: Mastering this Objective – Deeper Understanding

Addition & Subtraction: Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

 Identify the number of steps in a problem

- Identify the operations to be used
- Solve problems and check accuracy using estimation and rounding to check reasonableness of answer

A shirt and tie cost £45. A shirt and jacket cost £155, and a jacket and a tie cost £120. What is the cost of the shirt?

Football mad Kevin wanted to buy a football kit. He discovered that the shirt and shorts costs £37; the socks and shirt costs £35 and the socks and shorts costs £26. Work out the cost of each of the three items and explain how you did it. A survey was taken to show amphibians, mammals and reptiles in an area within the rainforest. The chart below shows the number of recorded sightings over a period of one week.

Creatures	Species	Number of sightings
Poison Dart Frog	Amphibian	3,021
Gorilla	Mammal	127
Anaconda	Reptile	602
Spider Monkey	Mammal	230
Gaboon Viper	Reptile	17,091
Jaguar	Mammal	321
Red-eyed Tree Frog	Amphibian	11,672
Lemur	Mammal	705

Which **species** had the largest number of recorded sightings? (Show your workings) Which **species** had the lowest number of sightings?

Summer 1: Week 5: Working at greater depth

Addition & Subtraction: Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Teaching Sequence	Activities for pupils working at greater o	ctivities for pupils working at greater depth:					
 Identify the number of steps in a problem Identify the operations to be used Solve problems and check accuracy using estimation and rounding to check reasonableness 	 Pizza Time 2 cheese and tomato pizzas and one garlic bread cost £10.60. 1 cheese and tomato pizza and 2 garlic breads cost £6.50. What is the total cost of 1 cheese and tomato pizza and 1 garlic bread? 	Guess my number Hamid thinks of a number between 20 and 30; He takes 10 away from it. He then halves it. Finally, he adds 55 to it. His answer is 62. What was his original number? Make up several of these for your friends to solve.					
of answer	Number Puzzle	s below and then create 4.2-diait numbers as					

Put any 4 numbers (0-9) into the empty spaces below and then create 4 2-digit numbers as shown below. Add the two horizontal numbers together and take away the sum of the two vertical numbers.

Example

6

3

2

8

Put 4 numbers in the 2×2 box so that you get as close as you can to 0 (in the first) and to 50 (in the second).

9

Summer 1: Week 5: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Addition & Subtraction: Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.		My Teacher
Can you solve a multi-step problem that requires addition and subtraction to 100,000?		
Can you solve a 2-step problem that requires addition and subtraction to 100,000?		
Can you solve a 2-step problem that requires subtraction to 100,000?		
Can you solve a 2-step problem that requires addition to 100,000?		
Can you solve word problems that require one step?		
Do you know which key words to look for to help you know which operation you are likely to need to use?		
Do you consistently read through a word problem carefully before trying to solve it?		

Year 5: Summer 1

Week 6: Multiplication & Division

Recognise and use square numbers and cube numbers, and the notation for square² and cubed³.

Summer 1: Week 6: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Summer 1: Week 6
Objective: Multiplication & Division	Recognise and use square numbers and cube numbers, and the notation for square ² and cubed ³ .

Write the square number or the cube of the number as indicated?

5 ²		If the square of a number is 64 what is the original number?	
10 ²		If the square of a number is 81 what is the original number?	
12 ²		3 ³	
8 ²		4 ³	
11 ²		5 ³	

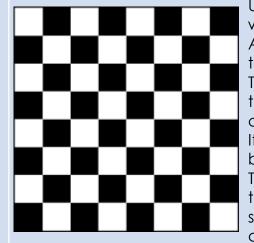
Summer 1: Week 6: Practice and Consolidation

Multiplication & Division: Recognise and use square numbers and cube numbers, and the notation for square² and cubed³.

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
 Know, by heart, the square of all numbers between 2 and 12. Know why a 	 squared to pupils. In effect it is a number multiplied by itself. Get pupils to chant out all the squared numbers between 1 and 100. Show cards to see how quickly pupils respond to knowing the square of numbers between 1 and 10. Know the relationship 	What is the square of the following numbers: 4 8 5 7 12 11 20 10 9
square number is called a square number by drawing squares		Which of these numbers is not a square number? 16 25 39 16 18 25 49 121 144 150
 Use the symbol ² accurately. Explain the relationship between the 		These are the square numbers for which numbers?811214004936641009009
square of a number and the square root of a number.	between a square and a square root. (although square root is not mentioned in NC it is appropriate to	These are cubed numbers for which numbers? 343 216 27 1 125 729 1000 64 8
 square of a number, use the inverse to calculate the square root. Use the symbol ³ accurately. 	number, use the inverse to calculate the square root. Use the symbol ³	I am 64, which number am I related to? I am 216, which number am I related to? I am 400, which number am I related to? I am 125, which number am I related to? I am 36, which number am I related to?

Summer 1: Week 6: Mastering this Objective – Deeper Understanding

Multiplication & Division: Recognise and use square numbers and cube numbers, and the notation for square² and cubed³.


	TeachingIf pupils have mastered this objective the activities independently:						ey will be able to complete these						
	Know, by heart, the square of all numbers between 2 and 12. Know why a square number is called a square number by drawing squares Use the symbol ² accurately. Explain the	Bingo Make up bingo cards which contain only square and cube numbers for numbers up to 12. Then in turns throw two dice and see if you have either the square or the cube of the sum of the dice on your bingo card.					Hav for i indi You in tu picl	Explain away Have all the square and cube numbers for numbers between 1 and 12 on individual cards. You then have 3 minutes to pick one up in turn and explain what it is, e.g. if you pick 8, you would say 8 is the cubed number for 2.					
~	relationship between the square of a number and the square root of a number. Knowing the	in o	rder.	-		25 125 obers for the sequ		Comp 2 3	2	3	4	5	6
À	square of a number, use the inverse to calculate the square root. Use the symbol ³ accurately.	num noti	Now, write down all the cubed numbers for numbers between 1 and 10 in order. Do you notice another pattern? What is it? Explain the pattern to your friend.			2	7	8	9	10	12		

Summer 1: Week 6: Working at greater depth

Multiplication & Division: Recognise and use square numbers and cube numbers, and the notation for square² and cubed³.

Teaching Sequence

- Know, by heart, the square of all numbers between 2 and 12.
- Know why a square number is called a square number by drawing squares
- Use the symbol ² accurately.
- Explain the relationship between the square of a number and the square root of a number.
- Knowing the square of a number, use the inverse to calculate the square root.
- Use the symbol ³ accurately

Activities for pupils working at greater depth:

Use a chess board and put counters with numbers on all the white squares.

All the number must be a square or the cube of numbers 1 to 12.

Two or more players take in turn to throw the dice. They can then add the dice together and claim the square or the cube to the number they have.

If say they throw two 2s and there is no 16 or 64 left on the board then they cannot take anything.

The winner is the person who collects as many numbers from the board as possible. If someone does not recognise the square or cube number on the board then the next player is allowed to take the number.

Link the numbers on the left to the number on the right.

On the left side write in a vertical line the numbers 1 to 12

On the right hand side write down all the square and cube number for numbers 1 to 12.

Now join the left hand number to the right by virtue of it being the square or the cube of the left hand number. Some numbers will join on to more than one right sided number. Play a game with two dice.

Each player throws and they have 3 seconds to say the square of that number for 2 points and/or the cube of that number for 5 points.

Each player throws 4 times and the one with highest number of points wins the game.

Summer 1: Week 6: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Multiplication & Division: Recognise and use square numbers and cube numbers, and the notation for square ² and cubed ³ .	Me	My Teacher
Can you use the symbols (3) (cubed) accurately?		
Do you know the cube of all numbers between 2 and 12 by heart?		
Do you know the relationship between the square of a number and the original number?		
Can you use the symbol (2) accurately?		
Do you know the square of all numbers between 2 and 12 by heart?		

YEAR 5 : SUMMER 2: Overview and Teaching Steps							
WEEK 1 WEEK 2		WEEK 3	WEEK 4	WEEK 5	WEEK 6		
5 Place Value	5 Addition & Subtraction	5 Fractions Decimals	5 Measures	5 Geometry	Consolidate and Assess		
Round any number up to 1,000,000 to the nearest 10, 100, 1000, 10000 or 100000	Consolidate Addition and Subtraction using columnar addition and subtraction	Recognise the percent symbol (%) and understand that per cent relates to 'number of parts per hundred' and write percentages as a fraction with denominator 100, and as a decimal.	Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.	Consolidate and revise all Year 5 learning associated with geometry to include work on angles, translations and shape	Start this week by revising the learning covered in Year 5 so as to ensure pupils are fluent and secure with their basic skills. Use a simple		
 Round any number up to 10,000 to the nearest 10 Round any number up to 10,000 to the nearest 100 	Revise: Adding numbers with up to 5-digits with no exchanging	 Know what the % symbol stands for. Know that percent deals with a number or 	 Know the approximate number of metres in 1 mile Know the 	Revise: > Reflecting a shape and re-plot > Translating a shape and re-plot	assessment process to check on pupils' confidence and consistency in using the learning		
 Round any number up to 10,000 to the nearest 1,000 Round any number up 	 Adding numbers with up to 5-digits with exchanging Subtracting 	 amount out of 100. Write % of amounts. 	approximate relationship between inches and cm	 Describing the properties of the reflected and/or translated shape 	outlined in Year 5. Analyse the results and use information to help focus the		
to 100,000 to the nearest 10 ➤ Round any number up to 100,000 to the nearest 100	numbers with up to 5-digits with no exchanging > Subtracting numbers with up	 Know that 50% is 50/100 = one half = ½. Know that 0.5 = 50% 	 Know the approximate relationship between a pound and a gram 	 evidencing that the shape and size has not changed Estimating, 	intervention pre- teaching sessions, as needed, for the following year.		
 Round any number up to 100,000 to the nearest 1,000 	to 5-digits with exchanging	Know that 25% is 25/100 = one quarter = 1/4.	 Know the approximate relationship 	comparing and measuring angles in drawings			
 Round any number up to 100,000 to the nearest 10,000 		 Know that 0.25 = 25% Know the 	between a pint and a litreCarry out a range	identifying acute, obtuse and reflex angles			
 Round any number up to 1,000,000 to the nearest 10 		percent values of all tenths.Know the	of approximate conversion calculations using	 Using a protractor to measure angles 			
 Round any number up to 1,000,000 to the nearest 100 		percent values of all fifths.	above	 Using a protractor to draw angles 			
 Round any number up to 1,000,000 to the nearest 1,000 		 Know the percent values of all quarters. 					
 Round any number up to 1,000,000 to the nearest 10,000 							
 Round any number up to 1,000,000 to the nearest 100,000 							

Year 5: Summer 2

Week 1: Place Value

Round any number up to 1,000,000 to the nearest 10, 100, 1000, 10000 or 100000

Summer 2: Week 1: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Sumr	Summer 2: Week 1						
Objective: Place Value	Round 100000	ound any number up to 1,000,000 to the nearest 10, 100, 1000, 10000 or 00000							
Round	hese n	umbers to th	e neare	est 10, 100, 1000, 10,0	00 or 100,000				
	1167 to the nearest 10			77,771 to the nearest 1000					
272 to the nearest 1	-			159,987 to the nearest 10,000					
1145 to th nearest 10	-			918,756 to the nearest 10,000					
5607 to the nearest 100				391,385 to the nearest 100,000					
2134 to the nearest 1000				357,867 to the nearest 100,000					

Summer 2: Week 1: Practice and Consolidation

Place Value: Round any number up to 1,000,000 to the nearest 10, 100, 1000, 10000 or 100000

	aching quence	Oral and Mental Activities Examples:	Pencil (Examp		oer Activ	rities			
A A	Round any number up to 10,000 to the nearest 10 Round any number up to 10,000 to the nearest 100	 Remind pupils of the learning carried out in the previous term related to rounding 	Round t 238	hese nur 2458	nbers to th 23457	ne neares 15980	t 10: 23981	238942	670234
*	Round any number up to 10,000 to the nearest 1,000 Round any number up to 100,000 to the nearest 10	decimal numbers.Explain that the same applies to rounding	Round th 478	hese nur 7834	nbers to th 23782	ne neares 15896	it 100: 89981	238093	902367
>	Round any number up to 100,000 to the nearest 100 Round any number up to 100,000 to the	 Iarger numbers. Provide pupils with cards that have large numbers on them 			nbers to th			(50001	000775
A	nearest 1,000 Round any number up to 100,000 to the nearest 10,000 Round any number up to 1,000,000 to the	and verbally get pupils to round the numbers to the nearest 10, 100 or	2391 Round t	3829 hese nur	23901 nbers to th	75845 ne neares	30002 at 10,000:	652891	908765
A A	nearest 10 Round any number up to 1,000,000 to the nearest 100 Round any number up	1000.Move on then to round to the nearest	12768	234578	123901	27584	5 3000	25 6528	391
A A	to 1,000,000 to the nearest 1,000 Round any number up to 1,000,000 to the nearest 10,000 Round any number up to 1,000,000 to the nearest 100,000	10,000 and 100,000.	Round t 127168	hese nur 23477	nbers to th 8 923901		·		9896

Summer 2: Week 1: Mastering this Objective – Deeper Understanding

Place Value: Round any number up to 1,000,000 to the nearest 10, 100, 1000, 10000 or 100000

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

>	Round any number up to 10,000 to the nearest 10	A number rounded to the nearest 100 is: 12800	Round to the nearest				
A	Round any number up to 10,000 to the nearest 100 Round any number up	Which of these numbers will not be 12800 when rounded?	10 100 1000 10000 100000				
~	to 10,000 to the nearest 1,000 Round any number up	12804; 12788; 12855; 12840	324987				
>	to 100,000 to the nearest 10 Round any number up	A number rounded to the nearest 1000 is:	762389				
>	to 100,000 to the nearest 100 Round any number up	427000 Which of these numbers will not be 427000	987642				
>	to 100,000 to the nearest 1,000 Round any number up	when rounded? 427451; 426899; 426501; 427501	98245				
	to 100,000 to the	42/431, 420077, 420301, 42/301					
A	nearest 10,000 Round any number up to 1,000,000 to the nearest 10 Round any number up	The following numbers have been rounded to the nearest 100. Give two examples of what the numbers	Round the following money to the nearest 10p; £1 and £10:				
~	to 1,000,000 to the nearest 100 Round any number up	could have been in the first place: 12900 62500 123900 159800	£23.98 £245.23 £45.65 £12.54				
>	to 1,000,000 to the nearest 1,000 Round any number up to 1,000,000 to the nearest 10,000	These have been rounded to the nearest 1000. Give two examples of what the	Round the following money to the nearest £100 and £1000:				
<i>></i>	Round any number up to 1,000,000 to the nearest 100,000	numbers could have been in the first place: 234000 152000 25000 89000	£2456.90 £24565.99 £67129.50 £456,982.90				

Summer 2: Week 1: Working at greater depth

Place Value: Round any number up to 1,000,000 to the nearest 10, 100, 1000, 10000 or 100000

	ching vence	Activities for pupils working at greater	depth:
AAAAA	Round any number up to 10,000 to the nearest 10 Round any number up to 10,000 to the nearest 100 Round any number up to 10,000 to the nearest 1,000 Round any number up to 100,000 to the nearest 10 Round any number up to 100,000 to the nearest 100 Round any number up to 100,000 to the nearest 1,000 Round any number up to 100,000 to the	Highest and LowestThe following numbers have been roundedto the nearest 1000.What is the largest; second largest and thesmallest number they could be?234,00076,000412,00069,000329,00055,000	Adding Rounded Numbers Two numbers between 670 and 700 have been rounded to the nearest 10. When adding the rounded numbers together they make 1350. Give two sets of examples of what the numbers could have been in the first place. Two numbers between 7000 and 7200 have been rounded to the nearest 100. When adding the rounded numbers together they make 14100. Give two sets of examples of what the numbers could have been in the first place.
	nearest 10,000 Round any number up to 1,000,000 to the nearest 10 Round any number up to 1,000,000 to the nearest 100 Round any number up to 1,000,000 to the nearest 10,000 Round any number up to 1,000,000 to the nearest 100,000 Round any number up to 1,000,000 to the nearest 100,000	All PossibilitiesThe following numbers have been rounded to the nearest 10.For each write down all the possible numbers they could be:450780340790These numbers have been rounded to nearest 100. Write down 5 possible numbers they could be:780054009850012900	Subtracting Rounded Numbers Two numbers between 850 and 870 have been rounded to the nearest 10. When rounded their difference is 10. Give two sets of examples of what the numbers could have been in the first place. Two numbers between 8000 and 8400 have been rounded to the nearest 100. When rounded their difference is 200. Give two sets of examples of what the numbers could have been in the first place.

Summer 2: Week 1: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Place Value: Round any number up to 1,000,000 to the nearest 10, 100, 1000, 10000 or 100000	Me	My Teacher
Can you round any number up to 1,000,000 to the nearest 10, 100, 1000, 10,000, 100,000?		
Can you round any number up to 100,000 to the nearest 10, 100, 1000 or 10,000?		
Can you round any number up to 10,000 to the nearest 10 or 100 or 1000?		
Can you round any number up to 1000 to the nearest 100?		
Can you round any number up to 1000 to the nearest 10?		
Can you round any number up to 100 to the nearest 10?		

Year 5: Summer 2

Week 2: Addition & Subtraction

Consolidate Addition and Subtraction using columnar addition and subtraction

Summer 2: Week 2: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name	Sumr	Summer 2: Week 2						
Objective: Addition & Subtraction	Consolidate Addition and Subtra	nsolidate Hition and Subtraction using columnar addition and subtraction						
4578 <u>6712+</u>	2379 <u>7628+</u>		76389 <u>14127-</u>	8756 <u>2329-</u>				
125892 <u>89671+</u>	12780 <u>13636+</u>		94578 <u>21854-</u>	77685 <u>22893-</u>				
78239 <u>12657+</u>	24819 <u>23678+</u>		89006 <u>25672-</u>	96785 <u>24366-</u>				

Summer 2: Week 2: Practice and Consolidation

Addition & Subtraction: Consolidate: Addition and Subtraction using columnar addition and subtraction

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper A Examples:	Activities			
Revise: Adding numbers with up to 5-digits with no exchanging	 This is a real chance to consolidate the learning already done in Years 4 and 5. Ensure pupils are 	Add the following usin 23567 + 67345 12579 + 65278 77999 + 56201	ng the columnar met 76234 + 85672 23782 + 77921 34561 + 7801	thod: 96234 + 23956 89892 + 78432 34250 + 7200		
 Adding numbers with up to 5-digits with exchanging Subtracting 	 confident about adding and subtracting where there is exchanging. Ensure pupils are using the columnar 	Subtract the following 12678 – 11352 67021 – 16820 78382 – 12455	g using the columnar 56892 – 12779 98122 – 12090 89300 – 23999	method: 67867 – 43329 34923 – 34892 78239 – 1245		
 numbers with up to 5-digits with no exchanging Subtracting numbers with up to 5-digits with exchanging 	 Ensure pupils are using the columnar method and they are setting out their calculations appropriately. 	Use the columnar method to work out the following problems. Melchester Rovers had crowds of 36,983; 38,912 and 41,889 for their last three matches. How many came to the three matches altogether? What was the difference between the highest and lowest attendance? During the Europe Song Contest 54008 voted for Spain; 67239 for Portugal; 25901 voted for the UK and 29812 voted for Sweden. By how many votes did Portugal beat Spain? If you added the UK				

Summer 2: Week 2: Mastering this Objective - Deeper Understanding

Addition & Subtraction: Consolidate: Addition and Subtraction using columnar addition and subtraction

Teaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:					
Revise: > Adding	Find the missing digits: Additions	Find the missing digits: Subtractions				
numbers with up to 5-digits with no exchanging	35893 56478 <u>16</u> 21+ <u>2</u> 375+ 52614 84853	362 1 42712 17423- 15 09-				
 Adding numbers with up to 5-digits 	42 19 5 312 16427+ 48709+	2715 2716 32 07- 491				
with exchanging	Now create some of your own for your friends to solve.	Now create some of your own for your friends to solve.				
 Subtracting numbers with 	Additions:	Subtractions:				
up to 5-digits with no exchanging	If the answer is 73786, what could the addition have been (2 numbers)?	If the answer is 12753, what could the addition have been (2 numbers)?				
 Subtracting numbers with up to 5-digits 	If the answer is 94527, what could the addition have been (2 numbers)?	If the answer is 23965, what could the addition have been (2 numbers)?				
with exchanging	If the answer is 89347, what could the addition have been (2 numbers)?	If the answer is 37284, what could the addition have been (2 numbers)?				
	If the answer is 99432, what could the addition have been (2 numbers)?	If the answer is 64290, what could the addition have been (2 numbers)?				

Summer 2: Week 2: Working at greater depth

Addition & Subtraction: Consolidate: Addition and Subtraction using columnar addition and subtraction

Teaching Sequence

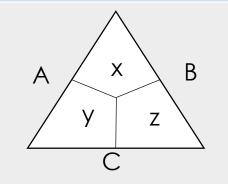
Revise:

- Adding numbers with up to 5-digits with no exchanging
- Adding numbers with up to 5-digits with exchanging
- Subtracting numbers with up to 5-digits with no exchanging
- Subtracting numbers with up to 5-digits with exchanging

Activities for pupils working at greater depth:

Over a 3 month period, 3 famous pop groups show their sales charts. The chart below shows the number of 'downloads' sold and the total profit made. Here is the chart:

Groups	October		Nove	mber	December		
	Sales	Total Profit	Sales	Total Profit	Sales	Total Profit	
U-Find	123,345	£120,000	173.992	£150,000	205,678	£180,000	
C-Front	238,923	£150,000	345,986	£320,000	297,776	£220,000	
B-Good	209,568	£130,000	298,993	£210,000	154,896	£160,000	
Which arour	n made most	nrofit over the	three month	s S			


Which group made most profit over the three months? How many downloads will be sold by each group over the 3 months? What was the difference between the sales of B-Good and U-Find? Make up 2 other questions to ask your friends.

Addition x + y = A

x + z = B

y + z = C

x, y and z have to be 5-digit numbers

Subtraction

The difference between x and y = A The difference between x and z = B The difference between y and z = C x, y and z have to be 5-digit numbers

Summer 2 Week 2 (as with Autumn 1: Week 6): Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Addition & Subtraction: Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction).	Me	My Teacher
Can you subtract a 5-digit number from another using columnar subtraction which requires exchange between the units, tens, hundreds or thousands (or any two of these)?		
Can you subtract a 5-digit number from another using columnar subtraction which requires no exchange between the units, tens, hundreds or thousands?		
Can you add 3 numbers with 5-digits using columnar addition where the units, tens or hundreds make more than 10?		
Can you add 2 numbers with 5-digits together using columnar addition, where the units, tens or hundreds when added make more than 10?		
Can you add 2 numbers with 5-digits together using columnar addition without exchange between units and tens?		

Year 5: Summer 2

Week 3: Fractions: Decimals

Recognise the percent symbol (%) and understand that per cent relates to 'number of parts per hundred' and write percentages as a fraction with denominator 100, and as a decimal.

Summer 2: Week 3: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name		Sumr	Summer 2: Week 3					
Objective: FractionsDecimals: Re relates to 'nu fraction with			'number of	parts pe	er hundred' a	ind write perc	rstand that pe centages as a	
			Comple	ete the	missing val	ves		
Percentage (%)	Decim Fractic	-	raction		Percentage (%)	Decimal Fraction	Fraction	
50%							3/4	
25%							5/6	
33%							3/10	
	0.3	3					1/4	
	0.0	5					2/9	
	0.7	5					4/10	
	0.2	2					7/8	

Summer 2: Week 3: Practice and Consolidation

Fractions: Decimals: Recognise the percent symbol (%) and understand that per cent relates to 'number of parts per hundred' and write percentages as a fraction with denominator 100, and as a decimal.

	aching quence	Oral and Mental Activities Examples:	Pencil (Examp	and Paper A les:	Activities			
A A	Know what the % symbol stands for. Know that percent deals with a number or amount out of	 Introduce pupils to the symbol '%'. Link the word 'cent' to 100 and mention its Roman origins if 	Find 10% £300 £345	6 of the follow 450Kg 675Kg	ving amounts: 45Litres 120Litres		metres metres	£240 £3498
\succ	100. Write % of	that helps them to remember.	Comple	te the chart:				
\triangleright	amounts. Know that 50% is	Link percentage with	Decim	al Fraction	Proper Fractio	n	Perc	entage
	50/100 = one half = $\frac{1}{2}$.	decimal fractions and proper fractions.		0.25				
≻	Know that 0.5 =	Use cards with			1/10 th			
\succ	50% Know that 25% is	examples of each, ie, 50%; ½; 0.5.						30%
	25/100 = one quarter = 1/4.	Ensure pupils are		0.75				
	Know that 0.25 = 25%	secure with percentage values			7/10 th			
>	Know the percent values of all tenths.	 related to tenths. Then ensure pupils know that 25% is a 	Find 20%	6 of the follow	ving amounts:			
>	Know the percent values of all fifths.	quarter and that 75% is three-quarters.	£350 £375	650Kg 675Kg	145Litres 150Litres		metres metres	£290 £3598
	Know the percent values of all quarters.							

Summer 2: Week 3: Mastering this Objective – Deeper Understanding

Fractions: Decimals: Recognise the percent symbol (%) and understand that per cent relates to 'number of parts per hundred' and write percentages as a fraction with denominator 100, and as a decimal.

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

>	Know what the % symbol stands for.	Which is more?		Finding pe	ercentage o	f the same o	amounts:	
>	Know that percent deals	20% of 200 or	25% of 180?		10%	20%	50%	
	with a number or		7500 - £1000	£34				
	amount out of 100.	30% of 200 or	75% of 100?	450m				
>	Write % of amounts.	10% of 560 or	90% of 50	560Kg				
≻	Know that 50% is 50/100 = one half	Explain your rea	soning.	£750				
	$= \frac{1}{2}$.			50 litres				
\succ	Know that 0.5 = 50%						1	
≻	Know that 25% is	I have 19%; how	Jimmy has 150 football cards.					
	25/100 = one		e it the same as 0.2?	He says he will give his best friend, Raja, 209 of them. How much will he give Raja?				
\succ	quarter = 1/4. Know that 0.25 =	I have 28%; how	much do need to take	or morn. n			aja	
	25%		the same as one quarter?	Helen has 350 pence.				
\succ	Know the percent			She gives (30% to Sally.			
	values of all tenths.		much do I need to add to	How much	n has Helen	left?		
\triangleright	Know the percent	it to make the so	ame as 4/5 ^m ?		f		0	
	values of all fifths.	Lhave 0500 hour	much do I need to take		on a farm w			
\succ	Know the percent			of the cows				
	values of all guarters.	dwdy io make ii	the same as 0.9?	now many	/ cows are l		11119	

Summer 2: Week 3: Working at greater depth

Fractions: Decimals: Recognise the percent symbol (%) and understand that per cent relates to 'number of parts per hundred' and write percentages as a fraction with denominator 100, and as a decimal.

eaching equence	Activities for pupils working at greater depth:							
 symbol stands for. Know that percent deals with a number or amount out of 100. Write % of amounts. Know that 50% is 50/100 = one half = ½. 	Shopping Trip Harry and Gail went shopping. Harry spent 20% of his money and was left with £20. Gail spent 50% of her money and was left with £15. Which of the two had most money in the first place?Order!! Order!!7/100.737/1009/100.919/100Explain your thinking.		rect 71% 92%					
 50% Know that 25% is 25/100 = one quarter = 1/4. Know that 0.25 = 25% Know the percent values of all tenths. Know the percent values of all fifths. 	Testing Time In a test all questions were worth the same amount of marks. There were 25 questions altogether.Attendance Here is the weekly attenda in school. Each class has 30 Class 1 - 96% Class 2 - 98% Class 3 - 90% Class 3 - 90% 	0 childrei	n.					

Summer 2: Week 3: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

understa	:: Decimals: Recognise the percent symbol (%) and and that per cent relates to 'number of parts per hundred, e percentages as a fraction with denominator 100, and as a	Me	My Teacher
	Do you know percentage value of all tenths; fifths; quarters and eighths?	<	
	Do you know percentage value of all tenths; fifths; quarters and eighths?		
	Do you know percentage value of all tenths; fifths; quarters and eighths?		
	Do you know percentage value of all tenths; fifths; quarters and eighths?		
	Do you know percentage value of all tenths; fifths; quarters and eighths?		
	Do you know what the symbol % stands for?		

Year 5: Summer 2

Week 4: Measures

Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.

Summer 2: Week 4: Pre-Learning Task

The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Name Summ		mmer 2: '	Week 4	
Objective: Measures		• •	mate equivalences between metric units as inches, pounds and pints.	s and
In metric we measure in mm, cm, Metres and Km. What do we use to measure in imperial measures?			In metric we use litres and millilitres. What terms are used for imperial measures?	
-	d mass, think of easures that are s and Kg. 		Join these to the correct measure: Pint Pound Weight Yard Stone Length Gallon Inch Capacity Mile ounce	

Summer 2: Week 4: Practice and Consolidation

Measures: Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.

Teach Seque	•	Oral and Mental Activities Examples:	Pencil aı Example	nd Paper es:	Activities			
ar nu m	now the oproximate umber of letres in 1 mile now the	 Show pupils examples of coins in use in the UK in the 1960s. Explain that as a result of decimalisation we now use metric system for money. However, although metric weights and lengths are used we have not fully 	shilling; ha What wer	If a crown	and sixper d how wou	nce.	he terms: c npare them	
re be ar > Kr ap re	oproximate elationship etween inches nd cm now the oproximate elationship etween a		 would t If someonic or Km a answer. If I have 	hat be? Us one has rur Ind metres	e the interr 1 mile, ap would that nilk deliver	net to resea proximate be? Again ed each do	ately how r arch your a ly how mar n, research ay, how ma r.	nswer. ny metres your
gr	ound and a ram now the	converted to the metric system.Many still weigh		ersion charl vill be appro		out the follo	owing. Most	t of your
ap	pproximate lationship	themselves in stones and pounds; many still	Len	gth	Wei	ight	Cap	acity
be	etween a pint nd a litre	pint talk of a pint of milk and many still measure car journeys by the mile. • Look at a range of charts to show the values of metric v	1 mile		2 stone		1 pint	
ra	arry out a Inge of		200 yards		10 pounds		1 gallon	
cc	oproximate onversion alculations		5 feet		20 ounces		10 pints	
	ing above	imperial.	10 inches		15 stone		1 quart	

Summer 2: Week 4: Mastering this Objective – Deeper Understanding

Measures: Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.

Teaching Sequence	If pupils have mastered this objective they will be able to complete these activities independently:					
 Know the approximate number of metres in 1 mile Know the approximate relationship between inches and cm Know the approximate relationship 	At a sports event the following long jumps were recorded: Tim - 4 yards, 2 feet and 6 inches Harry - 3 yards, 2 feet and 8 inches Rory - 3 yards, 2 feet and 10 inches Mary - 4 yards exactly Kim - 2 yards, 1 foot and 11 inches Convert these distances into metric.	At running event, James runs 1 mile in 5 minutes and 20 seconds. Will he have run 1 Kilometre faster or slower? Give an approximate time for him to have run 1 Kilometre at the same pace as he runs a mile. Jemma lifts a weight of 25 Kg. How much is this approximately in pounds and ounces?				
 between a pound and a gram Know the approximate relationship between a pint and a litre Carry out a range of approximate conversion calculations using above 	A family has 2 pints of milk each week day and 3 pints each on a Saturday and Sunday. How many litres do they consume in a week? A gardener has a 2 gallon watering can. He fills it five times and waters his plants. How litres of water does he use to water the plants?	Put all the following terms in to the correct box: length; weight or mass and capacity.Quart; ounces; mile; yard; furlong; pint; inch; gallon; feet; ton; pounds; stones; hundredweight (cwt);LengthWeight/ MassCapacity				

Summer 2: Week 4: Working at greater depth

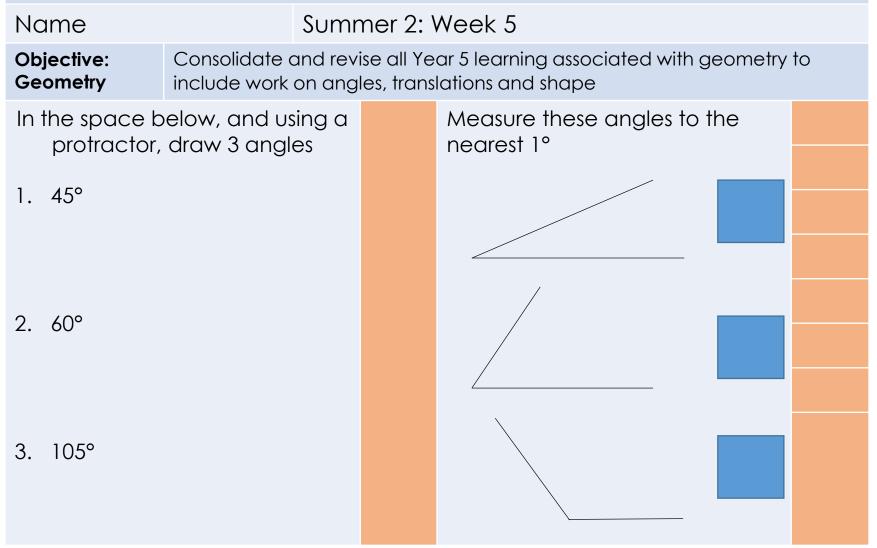
Measures: Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.

	aching quence	Activities for pupils working at greater depth:				
>	Know the approximate	Marking an athletics track:	Gardening Time			
A	number of metres in 1 mile Know the approximate relationship	The school's athletics track, which is oval, used to be 400 yards for one circuit. It is now 400 metres. Does this make the track longer or shorter?	A garden centre uses 40 gallons of water each day to water their saplings. How many litres of water do they use per week to water the saplings?			
>	between inches and cm Know the approximate relationship between a pound and a	The boys' champion was able to run 400 yards in 50 seconds. Approximately how much time will he take to run 400 metres? The girls' champion was able to run 400 yards 55 seconds, approximately how much time will she take to run 400 metres?	If they have to pay 1p for every 5 litres of water they use, how much does it cost each week to water the saplings?			
	gram	Baby Grow	Pounds, shillings and pence			
	Know the approximate relationship between a pint and a litre	A newly born baby puts on one pound of weight each month. She was seven pounds exactly when she was born in April.	Using research, find out which coins were in common use in the 1960s and what would be their value today.			
>	Carry out a range of approximate conversion	 In grams, how much does she weigh in December? In grams, how much does she weigh the following April? 	If an item cost five pounds, two shillings and sixpence, how would you pay that using our coins today?			
	calculations using above	 In grams, how much will she weigh when she is two? 	If an item cost ten pounds five shillings, how would you pay that today?			

Summer 2: Week 4: Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils books so that they can keep their own checks.

Measures: Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints.	Me	My Teacher
Can you carry out a range of conversion calculations based on your knowledge of metric and imperial?		
Do you know the approximate relationship between a pint and a litre?		
Do you know the approximate relationship between a pound and a gram?		
Do you know the approximate number of metres in 1 mile?		
Do you know the approximate relationship between inches and centimetres?		


Year 5: Summer 2

Week 5: Geometry

Consolidate and revise all Year 5 learning associated with geometry to include work on angles, translations and shape

Summer 2: Week 5: Pre-Learning Task

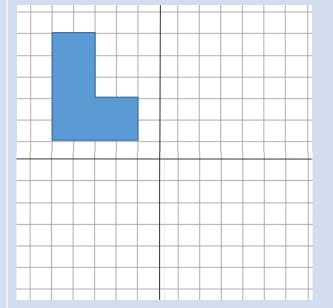
The pre-learning task below could be used to assess pupils' starting points within this objective. It needs to be completed by all/ or some of the pupils in advance of the main teaching.

Summer 2: Week 5: Practice and Consolidation

Geometry: Consolidate and revise all Year 5 learning associated with geometry to include work on angles, translations and shape

Teaching Sequence	Oral and Mental Activities Examples:	Pencil and Paper Activities Examples:
Revise: > Reflecting a	Revise the learning	Name the quadrants: I II III IV
 shape and re-plot Translating a shape and re-plot Describing the properties of the reflected and/or translated shape 	shape and re-plot Translating a shape and re-plot Describing the properties of the reflected and/or translated shape – evidencing that the shape and size has not changed Estimating, comparing and measuring angles in drawings identifying acute, obtuse and reflex angles	Reflect from Quadrant I to Quadrant II a triangle, noting the coordinates and ensuring that the distance from the horizontal and vertical axes are the same. Then reflect from Quadrant II to Quadrant III and from Quadrant 1 to Quadrant IV. Now do it again using a shape of your choice.
 the shape and size has not changed Estimating, 		Translate a triangle from one Quadrant to another. Note the coordinates and ensure that the size and shape remain the same. Now translate a shape of your choice.
measuring angles in drawings identifying acute, obtuse and reflex		Draw the following angles: 45°; 60°: 75°; 120°; 68°: 82°; 105°
 Using a protractor to measure angles Using a protractor 		Measure these very accurately

Summer 2: Week 5: Mastering this Objective – Deeper Understanding


Geometry: Consolidate and revise all Year 5 learning associated with geometry to include work on angles, translations and shape

Teaching Sequence

If pupils have mastered this objective they will be able to complete these activities independently:

Revise:

- Reflecting a shape and re-plot
- Translating a shape and re-plot
- Describing the properties of the reflected and/or translated shape – evidencing that the shape and size has not changed
- Estimating, comparing and measuring angles in drawings identifying acute, obtuse and reflex angles
- Using a protractor to measure angles
- Using a protractor to draw angles

Translate the L shape from the second quadrant to the first quadrant, noting the coordinates.

Then, reflect the L shape from Quadrant II to Quadrant III noting the distance from the horizontal axis.

Think of the angle created between the hands of a clock:

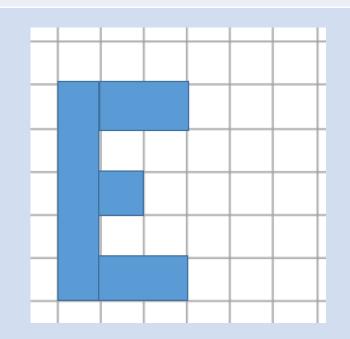
Is the angle an acute; obtuse or a right angle at these times?

8 o'clock; quarter past nine twenty past seven quarter past twelve 10 o'clock ten past seven

Now give another 3 examples of when the hands make an acute; obtuse or a right angle.

Estimate these angles and then measure them to within 1°.

Summer 2: Week 5: Working at greater depth


Geometry: Consolidate and revise all Year 5 learning associated with geometry to include work on angles, translations and shape

Activities for pupils working at greater depth:

Teaching Sequence

Revise:

- Reflecting a shape and re-plot
- Translating a shape and re-plot
- Describing the properties of the reflected and/or translated shape – evidencing that the shape and size has not changed
- Estimating, compare and measure angles in drawings identifying acute, obtuse and reflex angles
- Using a protractor to measure angles
- Using a protractor to draw angles

Plot the letter E in the first quadrant and then reflect it into the second, third and fourth quadrants. The shape has to remain the same shape and size.

Now do the same with the letters F, H and T.

What's the time Mr Wolf?

The minute and hour hands are open at an angle of 90° The hour hand is between 8 and 10.

Think of at least two possible times it could be?

The angle between the two hands is 60° and the minute hand is at 9. Think of at least possible times it could be.

Now make up similar problems for others to solve

Capital Angles

Draw the capital letter 'A' where the angle at the top is 35°.

Draw the capital letter ' \mathbf{K} ', ensuring that the angle in the centre is 40°.

Draw the capital letter 'V' ensuring that the angle at the bottom is 38°.

Draw the capital letter 'X' making sure that the intersecting angles are 45°.

Summer 2: Week 5 (As with Spring 1: Week 5): Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils' books so that they can keep their own checks.

Geometry: Reflection & Translation: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language and know that the shape has not changed	Me	My Teacher
Can you translate a shape from one quadrant to another ensuring that the shape and size is unchanged?		
Can you reflect a shape from one quadrant to another when the shape does not sit on the horizontal or vertical plane?		
Can you reflect a shape from one quadrant to another when the shape sits on the horizontal or vertical plane?		
Can you pinpoint a spot within a quadrant and describe by the coordinate points?		
Do you know which is the first, second, third and fourth quadrant?		
Can you create the four quadrants in the coordinate plane?		

Summer 2: Week 5 (As with Autumn 1: Week 4): Assessment

The grid below helps to identify the journey pupils make towards mastering this objective. It can be used by the teacher to keep an on-going check on progress or more likely placed in the pupils books so that they can keep their own checks.

Geometry: Angles: Know angles are measured in degrees; estimate & compare acute, obtuse & reflex angles. Identify: Angles at a point on a straight line & half a turn (total 180°); Angles at a point & one whole turn (total 360°); Other multiples of 90°; Draw given angles, & measure them in degrees	Me	My Teacher
Can you draw a given angle and measure them in degrees (°)?		
Can you estimate an angle and then check it?		
Do you know that you use a protractor to measure angles?		
Do you know that angles are measured in degrees which has a symbol like this (°)?		
Can you identify a reflex angle?		
Can you identify an obtuse angle?		
Can you identify an acute angle?		

Year 5: Summer 2

Week 6: Consolidate and Assess

- Start this week by revising the learning covered in Year 5 so as to ensure pupils are fluent and secure with their basic skills.
- Use a simple assessment process to check on pupils' confidence and consistency in using the learning outlined in Year 5.
- Analyse the results and use information to help focus the intervention and pre-teaching sessions, as needed, for the following term.

Year 5: Summer 2: Week 6

The focus of the consolidation should be the following aspects:

- Count on/back from a given number in steps of 100/1000/10,000/100,000 to a 1,000,000 and beyond
- Read, write, and order numbers to 1,000,000 and beyond
- Compare numbers to 100,000 and beyond
- Partition numbers to 1,000,000 and beyond
- Find powers of 10 more than a given number
- Read, write, partition, order and compare decimal numbers up to 3dp
- Round decimals with 1 and 2dp to the nearest whole number and to 1dp
- Multiply and divide numbers mentally drawing upon known facts
- Multiply and divide any whole and decimal number by 10, 100, 1000
- Count on/back with positive and negative numbers, including through zero
- Count on/back in fraction and decimal sequences e.g. 2.5 or 1 $\frac{1}{2}$
- Round any number to 1,000,000 and beyond to the nearest 10, 100, 1000, 10,000 and 100,000
- Add mentally a 5-digit number and 4- digit numbers e.g. 15,345 + 2300
- Mentally add and subtract tenths and one-digit whole numbers and tenths
- Find complements to 100. 1000, 10,000; £1.00, £5.00 and £10.00; and to 1 using 3dp
- Find factors and factor pairs of each number to 100
- Convert units of measurement (km and m; cm and m; cm and mm; gram and km, ml and L)
- Although practise and consolidation should be on-going through each half term, during Week 6 there should be greater opportunity taken to check pupils' learning and understanding.
- Summative and Formative assessment procedures should help teachers gain a clear picture as to which pupils are at different stages, including mastery and greater depth.