Autumn Scheme of Learning

Year(2)

2020-21

New for 2020/21

2020 will go down in history. The world has changed for all of us.

We want to do as much as we can to support children, teachers, parents and carers in these very uncertain times.

We have amended our schemes for 2020/21 to:

- \bigstar highlight key teaching points
- ★ recap essential content that children may have forgotten
- ★ flag any content that you might not have covered during the school closures period.

We hope these changes will add further value to the schemes and save you time.

Lesson-by-lesson overviews

We've always been reluctant to produce lesson-bylesson overviews as every class is individual and has different needs. However, many of you have said that if blended learning becomes a key feature of school life next year, a weekly plan with linked content and videos could be really useful.

As always, we've listened! We've now produced a complete lesson-by-lesson overview for Y1 to Y9 that schools can use or adapt as they choose. Each lesson will be linked to a free-to-use home learning video, and for premium subscribers, a worksheet. This means that you can easily assign work to your class, whether they are working at home or in school.

Inevitably, this lesson-by-lesson structure won't suit everyone, but if it works for you, then please do make use of this resource as much as you wish.

White Rose Maths

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of opportunities to build reasoning and problem solving elements into the curriculum.

For more guidance on teaching for mastery, visit the NCETM website:

https://www.ncetm.org.uk/resources/47230

Concrete - Pictorial - Abstract

We believe that all children, when introduced to a new concept, should have the opportunity to build competency by taking this approach.

Concrete – children should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial – alongside this children should use pictorial representations. These representations can then be used to help reason and solve problems.

Abstract – both concrete and pictorial representations should support children's understanding of abstract methods.

Need some CPD to develop this approach? Visit <u>www.whiterosemaths.com</u> for find a course right for you.

Supporting resources

NEW for 2019-20!

We have produced supporting resources for every small step from Year 1 to Year 8.

The worksheets are provided in three different formats:

- Write on worksheet ideal for children to use the ready made models, images and stem sentences.
- Display version great for schools who want to cut down on photocopying.
- PowerPoint version one question per slide. Perfect for whole class teaching or mixing questions to make your own bespoke lesson.

For more information visit our online training and resources centre <u>resources.whiterosemaths.com</u> or email us directly at <u>support@whiterosemaths.com</u>

White Rose Maths

4

Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who's your favourite?

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Number: Place Value			Nur	mber: Addition and Subtraction				Measu Mo	rement: ney	Number: <u>Multiplication</u> and Division	Consolidation
Spring	Number: Multiplication and <u>Division</u>			Stati	stics	Geon Proper Sha	netry: ties of ape	Number: Fractions			5	
Summer	Measurement: Geometr Length and Position a Height Directio		netry: on and ction	Consol and pr solv	lidation oblem /ing	Measur Tir	ement: ne	Meas Ca Te	urement: apacity a emperatu	Mass, nd re	Consolidation	

Year 2 | Autumn Term | Week 1 to 3 – Number: Place Value

Overview

Small Steps

Counting forwards and backwards within 20	R	
Tens and ones within 20	R	
Counting forwards and backwards within 50	R	
Tens and ones within 50	R	
Compare numbers within 50	R	
Count objects to 100 and read and write numbers in numerals and words		
Represent numbers to 100		
Tens and ones with a part-whole model		
Tens and ones using addition		
Use a place value chart		
Compare objects		
Compare numbers		
Order objects and numbers		

Notes for 2020/21

It is important to spend time early on recapping numbers within 20 and 50 before moving onto numbers to 100.

Many children will need this recap as they may not be secure in their understanding of tens and ones from Y1, even though they may have met it.

Year 2 | Autumn Term | Week 1 to 3 – Number: Place Value

Overview Small Steps

Notes for 2020/21

We have separated the step counting in 2s, 5s and 10s into three recap steps in order to explore them in more detail.

Count & Write Numbers to 20

Notes and Guidance

Children are building on their existing knowledge of counting forwards and backwards by introducing the numbers 11-20 Children should explore the meaning of the suffix 'teen' and what this tells us about a number.

11, 12, 13 and 15 are usually difficult for children to understand because they cannot hear the single digit in the name like others e.g. sixteen - six ones and a ten.

Mathematical Talk

- Let's count together from 9, 10, 11, 12, 13, 14, 15, 16
- What do you notice about the sounds of the numbers?
- Do you notice a pattern with the numbers?
- What comes after the number 10?
- What do you notice about the ends of most of these numbers?
- What does 'teen' tell us about a number?
- How do we say this number?
- How would we write _____?

Varied Fluency

Match the representations to the correct numeral.

words.

10 Write the number shown on the ten frames in numerals and

18

Use your own ten frames to show me the number:

Fourteen

Nine 16

Count & Write Numbers to 20

Reasoning and Problem Solving

Circle the odd one out and explain why.

1112131415611718

61 is the odd one out. It should be 16, the digits have been swapped round.

Tens and Ones

Notes and Guidance

Children learn each number from 11 to 19 has '1 ten and some more'.

They will see 10 and 20 as having just tens and no ones. Children still need to understand that numbers can be seen in different ways. Discuss 1 ten being equal to 10 ones. Base 10 will be introduced in this step. Children can use these concretely but also draw them as 'sticks and bricks'. A line represents 1 ten and a dot represents 1 one.

Mathematical Talk

What numbers come after 10? Which numbers have the 'teen' sound in them? What does the number _____ look like? Which is greater 1 ten or 1 one? How do you know? What does 'teen' tell us about a number? Can you swap tens for ones? Will it change the amount? Explain. Do we need to count the 10 individually? Do we need to start counting from 0 every time? Can you describe the number _____ using tens and ones?

Varied Fluency

Open ended e.g. 1

ten and 5 ones

make 15

Tens and Ones

Reasoning and Problem Solving

How many ways can you complete the part-whole model to show numbers up to 20, using the Base 10 equipment – you do not have to use it all.

Numbers to 50

Notes and Guidance

Children count forwards and backwards within 50. They use a number track to support where needed, in particular crossing the tens boundaries and with teen numbers. Children build on previous learning of numbers to 20 They learn about grouping in 10s and their understanding of 1 ten being equal to 10 ones is reinforced.

Mathematical Talk

How can we count a larger number of objects more easily.

What happens when we get to 10? 20? 30?

__ ones make ___ ten.

How many groups of 10 can we see in the number ____?

Which practical equipment is best for showing groups of 10?

Varied Fluency

🚺 Use the number track to

- count forwards from 35 to 49
- count back from 46 to 38

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Can you count from ____ to ____ without a number track?

These images both show the same number of counters. Which counters are easier to count? Why?

Numbers to 50

Reasoning and Problem Solving

Tens and Ones

Notes and Guidance

Children use practical equipment to represent numbers to 50 They continue to build their understanding that ten ones can be grouped into one ten. They need to practice grouping equipment into tens themselves (straws, cubes, lolly sticks, 10 frames) before introducing ready made tens or place value counters.

It is important that children understand how a number is made up of tens and ones, e.g. 34 = 3 tens and 4 ones.

Mathematical Talk

How many have we got? How can we make them easier to count?

How many tens are there?

How many ones are there?

I have ____ tens and ____ ones. What number does that make? How do we record this number in words?

Varied Fluency

There are <u>tens</u> and <u>ones</u>.

- ___ tens + ___ ones = 23
- Vhat number is represented in the grid?

- Match the pictures and words.
 - Four tens and three ones
 - Two tens and five ones
 - Three tens and four ones
 - Three ones and five tens

16

Tens and Ones

Reasoning and Problem Solving

Tommy is wrong. He has wrote 3 which should be 30 or 3 tens.

Rosie is correct – she has just recorded the ones first.

Jack is correct. 10 + 10 = 20Two tens is the same as twenty. Dora and Amir both try to build the same number.

42

Amir is correct.

Dora has got mixed up with tens and ones and shown 4 ones and 2 tens (24).

Who is correct?

Can you explain the mistake that has been made?

Compare Numbers within 50

Notes and Guidance

Building on previous learning of comparing practical objects within 50, children now compare two numbers within 50 using the inequality symbols.

Children continue to use the language 'more than', 'less than' and 'equal to' alongside the correct symbols to compare numbers.

Mathematical Talk

Which number is more? Which is less?

What could we use to represent the numbers?

What do <, > and = mean?

How do you know you have more or less?

What could you use to help you compare?

Varied Fluency

Use the number track to compare the two numbers using words and inequality symbols.

38 O nineteen

1	2	3	4	5	6	7	8	9	10
11	1 2	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Use a number line or 1-50 grid to compare:

©White Rose Maths

Compare Numbers within 50

Reasoning and Problem Solving

Teddy's number could be 21 or 22 It can't be 20 as this is one more than 19.

Count Objects to 100

Notes and Guidance

To build on skills learned in Year 1, children need to be able to count objects to 100 in words and represent these numbers in numerals.

Problems should be presented in a variety of ways e.g. numerals, words and images. Variation should challenge children by providing them with missing numbers which are non-consecutive.

Mathematical Talk

How can you count the cars? Do you have a strategy? What is one more/one less?

Which is the largest number? Which number is tricky to write in words?

Which numbers sound similar? How are 17 and 70 different? Can you show me?

Varied Fluency

Count and write the number of cars in the car park.

There are _____ cars in the car park.

Match the numerals to the words. 17
48
38
70 thirty-eight seventy forty-eight seventeen

Count Objects to 100

Reasoning and Problem Solving

Represent Numbers to 100

Notes and Guidance

Children need to be able to represent numbers to 100 using a range of concrete materials, such as bead strings, straws, Base 10 equipment etc.

Children should also be able to state how a number is made up. For example, they can express 42 as 4 tens and 2 ones or as 42 ones.

Mathematical Talk

How have the beads been grouped? How does this help you count?

Can you show me the tens/ones in the number?

Which resource do you prefer to use for larger numbers? Which is quickest? Which would take a long time?

Varied Fluency

Here is part of a bead string.

Match the number to the correct representation.

Complete the sentences.

There are _____tens and ____ones.

The number is _____.

Represent 45 on a bead string and complete the same sentence stems.

One ten and five ones Thirty-five

25

Represent 67 in three different ways.

Represent Numbers to 100

Reasoning and Problem Solving

Tens and Ones (1)

Notes and Guidance

Children should have an understanding of what each digit represents when partitioning a number.

It is important that children can partition numbers in a variety of ways, not just as tens and ones. For example, 58 is made up of 5 tens and 8 ones or 4 tens and 18 ones, or 2 tens and 38 ones, etc.

Mathematical Talk

Which part do we know? How can we use the whole and part to work out the missing part?

Can you use concrete resources/draw something to help you partition?

How can you rearrange the counters to help you count the lemon and strawberry cupcakes?

Varied Fluency

The ten frames represent lemon and strawberry cupcakes. Draw a part-whole model to show how many cupcakes there are altogether.

Tens and Ones (1)

Reasoning and Problem Solving

Tens and Ones (2)

Notes and Guidance

Children continue to use a part-whole model to explore how tens and ones can be partitioned and recombined to make a total.

Children will see numbers partitioned in different ways. For example, 39 written as 20 + 19

This small step will focus on using the addition symbol to express numbers to 100. For example, 73 can be written as 70 + 3 = 73

Mathematical Talk

What clues are there in the calculations? Can we look at the tens number or the ones number to help us?

What number completes the part-whole model?

What is the same/different about the calculations?

What are the key bits of information? Can you draw a diagram to help you?

Varied Fluency

Match the number sentence to the correct number.

14

10 + 420 + 19

80 + 1

40

81

40 + 0

39

Complete the part-whole model and write four number sentences to match.

- Dora has 20 sweets and Amir has 15 sweets. Represent the total number of sweets:
 - With concrete resources.
 - In a part-whole model.
- 26 As a number sentence.

Tens and Ones (2)

Reasoning and Problem Solving

Teddy thinks that,

Explain the mistake he has made.

Can you show the correct answer using concrete resources?

40 + 2 = 42Teddy has just combined the numbers to make 402 without thinking about their place value.

Fill in the missing numbers.	1 ten + 3 ones = 13
1 ten + 3 ones = 13	2 tens + 3 ones = 23 3 tens + 3 ones = 33
2 tens + ones = 23	4 tens + 3 ones = 43
3 tens + 3 ones =	
tens + 3 ones = 43	
What would the next number in the pattern be?	5 tens + 3 ones = 53

Place Value Charts

Notes and Guidance

Children should formally present their work in the correct place value columns to aid understanding of place value.

It is important for children to use concrete, pictorial and abstract representations in their place value chart.

Varied Fluency

What number is represented in the place value chart?

Complete the place value chart using Base 10 and place value counters to represent the number 56

What number is represented in the place value chart?

28

Write two different number sentences for this number.

Mathematical Talk

How many tens are there?

How many ones are there?

What is different about using Base 10 to using place value counters?

Can you write any other number sentences about the place value chart?

Place Value Charts

Reasoning and Problem Solving

How many two digit numbers can you make that have the same number of tens and ones?

Show each one on a place value chart.

Tens	Ones

There are nine possibilities: 11, 22, 33, 44, 55, 66, 77, 88, 99

Compare Objects

Notes and Guidance

Comparing objects is introduced once children have a secure understanding of numbers in a place value chart.

Children are expected to compare a variety of objects using the vocabulary 'more than', 'less than' and 'equal to' and the symbols <, >, =

Mathematical Talk

How can you arrange the objects to make them easy to compare?

Do groups of ten help you count? Why?

Do groups of ten help you compare? Why?

Varied Fluency

Amir's sweets

Who has the most sweets?

- 🚺 Use cubes to show that:
 - Eleven is less than fifteen
 - 19 is greater than 9
 - 2 tens is equal to 20

 \Box Use <, > or = to complete.

Compare Objects

Reasoning and Problem Solving

Rosie and Amir are comparing numbers they have made.

Explain your answer.

Rosie is incorrect because Amir has 4 tens which makes 40 and Rosie has 3 tens and 6 ones which makes 36, therefore Amir has more. Add more Base 10 to make the number shapes and the Base 10 equal.

Children should add 3 tens and 4 ones to make 54 on both sides.

If the symbol changed to < the smallest amount they could add is 3 tens and 5 ones.

How much did you add in total to make them equal?

What is the smallest amount you could add if the symbol changed to <?

Compare Numbers

Notes and Guidance

Children compare numbers using the language greater than, less than, more than, fewer, most, least and equal to.

They are able to use the symbols <, > and = to write number sentences.

Children should have access to concrete resources to help them justify their answers.

Mathematical Talk

Can you prove your answers using concrete resources?

Can you prove your answers by drawing a diagram?

Is there more than one answer?

Do you need to work the number sentences out to decide which is greater?

Varied Fluency

Complete the statements using **more than**, **less than** or **equal to**.

42 is _____46

81 is _____ 60 + 4

30 + 8 is _____ thirty-eight

Complete the number sentences.

4 tens and 9 ones > _____

_____<70+5

_____ = eight tens

Put <, > or = in each circle to make the statements correct.

Compare Numbers

Reasoning and Problem Solving

Order Objects and Numbers

Notes and Guidance

Children order numbers and objects from smallest to greatest or greatest to smallest.

They should be encouraged to use concrete or pictorial representations to prove or check their answers.

Children use the vocabulary 'smallest' and 'greatest' and may also use the < or > symbols to show the order of their numbers.

Mathematical Talk

How does the number line help you order the numbers?

How does Base 10 prove that your order is correct?

How did you know which of the diagrams represented the smallest/greatest number?

Did you look at the tens or ones?

Varied Fluency

Circle the numbers 48, 43 and 50 on the number line.

Put the numbers 48, 43 and 50 in order starting with the smallest.

Use Base 10 to make the numbers sixty, sixteen and twenty-six. Write the numbers in order starting with the greatest number.

The diagrams represent different numbers.

-999999999999000000000

Circle the greatest number. Circle the smallest number.

Complete the number sentence _____ > ____

Order Objects and Numbers

Reasoning and Problem Solving

Order the numbers below. Which would be the fourth number?

Explain how you ordered them.

If I ordered them from smallest to largest: 29, 33, 34, 37, 43, 53 then 37 would be the fourth number.

Alternatively, if I order the numbers from largest to smallest: 53, 43, 37, 34, 33, 29 then 34 would be the fourth number.

Count in 2s

Notes and Guidance

Children build on their previous knowledge of counting in multiples of 2 and go beyond 20 up to 50

They will apply previous learning of one more and one less to counting forwards and backwards in twos. For example, two more than and two less than. The 1-50 grid can be used to spot and discuss patterns that emerge when counting in 2s.

Mathematical Talk

How can we count the pairs? What does it mean to count in pairs?

Can we use tens frames to help us count in 2s? Can you see any patterns when you count in 2s?

Varied Fluency

How many socks are there?

There are ____ socks in total.

How many gloves are there?

There are ____ gloves in total. Represent the gloves using ten frames.

Complete the number lines by counting in 2s.

38, 36, 34

Possible answer:

Children will not

2, they will say 28,

26, 24 and 22

Count in 2s

Reasoning and Problem Solving

Count in 2s backwards to complete the number track.

Always, sometimes, never...

Sometimes. It depends on your starting number. For example 1, 3, 5... Also for 12, 14, 16, the tens digit is 1

Rosie counts back from 50 in 2s. Amir counts up from 12 in 2s.

50, 48, 46, 44...

12, 14, 16...

They say their numbers together. Who will say 30 first.

Rosie says 11 numbers to reach 30 Amir says 10 numbers to reach 30 So Amir will get there first.

Count in 5s

Notes and Guidance

Children build on previous learning of counting in fives to go beyond 20 and up to 50

The 1-50 grid can be used to spot and discuss patterns that emerge when counting in 5s.

Mathematical Talk

How can we count the groups of 5?

- Can you describe the pattern when you count in 5s?
- Will _____ appear on our number line? Why/why not?

Varied Fluency

How many fish are there?

There are ____ fish in each tank. There are ____ tanks. There are ____ fish altogether.

How many grapes are there?

There are ____ grapes in each bunch.

There are <u>bunches</u>.

There are ____ grapes altogether.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Complete the number lines by counting in 5s.

Count in 5s

Reasoning and Problem Solving

because 43 does not end in a 5 or a

If she makes 9 flowers she will use 45 counters.

27 because you would not count it if you were counting in 5s. Children also may give other responses.

Work in groups.

Create a circle with your hands. You can choose to put in one hand or both hands.

Count how many fingers and thumbs you can see altogether.

Can you predict how many? Count to check.

Children can

practise counting in 5s and recognise one hand is worth 5 They may start to spot patterns and reason about how many there will be.

Count in 10s

Notes and Guidance

- Children count in groups of tens for the first time. Previously they have counted in 2s and 5s.
- They use pictures, bead strings and number lines to support their counting.

Counting in 10s on a hundred square will also support children to see the similarities between the numbers when we count in tens.

Mathematical Talk

How many birds/flowers are there in total?

- How can we use our number lines to help us count them?
- Will ______ appear on our number line? Why?
- What is the same about all the numbers we say when we are counting in tens?

Varied Fluency

There are	flowers in each bunch.
There are	bunches.
There are	flowers altogether.

Can we count in tens on a number track as well? How does this match counting on a bead string? 40

Count in 10s

Reasoning and Problem Solving

In a shop, grapes come in bunches of 10

Max wants to buy forty grapes.

Are there enough grapes?

Yes there are enough grapes. There are fifty grapes and Max only needs forty.

Jemima is counting in 10s on part of a hundred square.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

She starts at 10

Shade in all the numbers Jemima will say.

What is the same about the numbers she says?

What is different about the numbers?

Jemima will say 10, 20, 30, 40 and 50 All the numbers have the same ones digit (0) They all have different tens digit. The tens digit goes up by 1 for each new number she says.

18

Count in 3s

Notes and Guidance

Children count forwards and backwards in 3s from any multiple of 3

Encourage children to look for patterns as they count and use resources such as a number track, a counting stick and concrete representations.

Mathematical Talk

- What do you notice about the numbers?
- Are the numbers in the sequence getting larger or smaller?
- Can you spot a pattern?
- What are you counting up in?

Varied Fluency

What do you notice about the numbers that are circled? Continue the pattern.

Amir has 15 stickers. He collects 3 more each day. Complete the number track to show how many he will have in six days.

Count in 3s

Reasoning and Problem Solving

Year 2 | Autumn Term | Week 4 to 8 - Number: Addition & Subtraction

Overview Small Steps

Fact families - addition and subtraction bonds to 20 Check calculations Compare number sentences Related facts Bonds to 100 (tens) Add and subtract 1s 10 more and 10 less Add and subtract 10s Add by making 10 R Add a 2-digit and 1-digit number - crossing ten R Subtraction - crossing 10 Subtract a 1-digit number from a 2-digit number - crossing ten Add two 2-digit numbers - not crossing ten - add ones and add tens

Add two 2-digit numbers - crossing ten - add ones and add tens

Notes for 2020/21

Adding by making 10 can be a difficult concept for children to grasp therefore we have included this as a recap from Year 1.

Similarly subtraction crossing 10 is recapped before children move onto more formal subtraction.

Year 2 | Autumn Term | Week 4 to 8 - Number: Addition & Subtraction

Overview Small Steps

Notes for 2020/21

Number bonds are an important aspect of mathematics. Extra time is devoted to this to help children become fluent.

Fact Families

Notes and Guidance

Children apply their understanding of known addition and subtraction facts within 20 to identify all related facts. This will include an understanding of the relationship between addition and subtraction, and knowing the purpose of the equals sign, as well as the addition and subtraction signs. Showing the link between representations, such as part-whole models and bar models can support and deepen the children's understanding.

Mathematical Talk

What if we took away the red flowers? What are the parts? What is the whole?

Does it change the answer if we add the blue and red flowers in a different order?

What does each circle represent on the part-whole model?

How many different number sentences are there in the fact family?

Varied Fluency

• Using concrete apparatus, can you talk about the relationships between the different flowers?

One relationship shown by this part-whole model is 15 + 5 = 20 Can you write all associated number sentences in the fact family?

Look at the bar model below.

Can you write all of the number sentences in the fact family?

47

Fact Families

Reasoning and Problem Solving

7 and 11 Here is an incomplete bar model. 8 and 12 The total is greater than 10 but less 9 and 13 than 20 10 and 14 What could the missing numbers be? 11 and 15 How many different combinations can 12 and 16 you find? 13 and 17 14 and 18 4 15 and 19 8 - 5 = 38 - 3 = 58 = 5 - 33 = 8 - 5Rosie says, Ron is correct I think that all of these because 8 is not facts are correct equal to 5-3because the numbers are related Ron disagrees. Who is correct? Can you prove it?

Check Calculations

Notes and Guidance

It is essential that children have the opportunity to discuss and share strategies for checking addition and subtraction calculations.

Checking calculations is not restricted to using the inverse. Teachers should discuss using concrete resources, number lines and estimating as part of a wide range of checking strategies.

Mathematical Talk

- What resources could you use to check your calculation?
- Can you check it in more than one way?
- Why do we need to check our calculation?
- Is there another way you could represent this?

Varied Fluency

Can you use inverse operations to check 5 + 12 = 17?

How many possible inverse calculations are there?

Eva writes this calculation: 18 - 5 = 13 Which of the following could she use to check her work?

Check Calculations

Reasoning and Problem Solving

It should have All of the Eva did the following calculation: Teddy is checking Dora's work but been 8 + 4 = 12doesn't do an inverse calculation. calculations or 4 + 8 = 12involve errors: 12 - 8 = 46 has been added 0) These calculations to the tens instead can't be right. of the ones. She checked it by using the inverse. 25 and 23 are She did 12 + 8 = 20 and said that her very close in value 24 + 6 = 84first calculation was wrong. and therefore can't 25 - 23 = 12result in such a What advice would you give her? 18 - 3 = 21large difference. 18 and 3 have been added How might he know? instead of subtracted. What errors have been made in each calculation?

Compare Number Sentences

Notes and Guidance

Children should be encouraged to examine number sentences to find missing values using structure rather than calculation. Using numbers within 20 to explore mathematical relationships will give the children confidence and allow them to spot patterns because they are working within the context of familiar numbers.

Children should compare similar calculations using greater than, less than and equal to symbols.

Mathematical Talk

What other numbers make the same total?

Do we need to calculate the answer to work out the missing symbol?

Do you notice a pattern? What would come next?

Varied Fluency

How can we use the following representation to prove that 5 + 3 = 4 + 4?

Fill in the circles with either <, > or =

Complete the missing numbers.

____+ 3 =____ + 4 = 5 + 5

Compare Number Sentences

Reasoning and Problem Solving

Rosie thinks she knows the missing number without calculating the answer.

Can you explain how this could be possible?

17 is two more than 15, so the missing number must be two more than 7

The missing number must be 9

Lots of different Both missing numbers are less than 10 combinations, the left number has to be smaller than 7+ < 7+ the right. Possible answers: 1 and 2 How many different possible answers 1 and 3 can you find? 1 and 4 1 and 51 and 6 1 and 7 1 and 8 1 and 9 2 and 3

Etc.

Related Facts

Notes and Guidance

Children should have an understanding of calculations with similar digits. For example, 2 + 5 = 7, so 20 + 50 = 70This involves both addition and subtraction. It is important to highlight the correct vocabulary and help children to notice what is the same and what is different between numbers and calculations.

'Tens' and 'ones' should be used to aid understanding. Using Base 10 can also help the children to see relationships.

Mathematical Talk

What is the same? What is different?

How does Base 10 help us to see the relationships between the different numbers and calculations?

What do you notice about the part-whole models?

Is there a relationship between the numbers that are represented?

Varied Fluency

- I have 3 blue pens and 4 black pens. Altogether I have 7 pens. Tommy has 30 blue pens and 40 black pens. How many pens does he have in total?
 - Use concrete apparatus to show your thinking.

Complete the part-whole models below:

- 5+4=9 8=3+5 4=10-6
- 50 + 40 = 80 = 30 + 40 = -60

53

Related Facts

Reasoning and Problem Solving

Continue the pattern. 90 = 100 - 10 80 = 100 - 20 70 = 100 - 30	60 = 100 - 40 50 = 100 - 30 Etc.	Whitney has 3 jam tarts.	30 + 60 = 90 If all of the red tarts are eaten
What are the similarities and difference between this pattern and the following one? 9 = 10 - 1 $8 = 10 - 2$ $7 = 10 - 3$	The digits are the same but the place value changes.	Altogether they have 9 jam tarts. 3 + 6 = 9	1 + 2 = 3 so 10 + 20 = 30 If all of the purple tarts are eaten
Alex says, If I know 9 + 1 = 10, I can work out 90 + _= 100 Find the missing number and explain how Alex knows.	10 All the numbers are ten times greater.	So + = 90 What if all of the red jam tarts are eaten? What if all of the purple jam tarts are eaten?	2 + 4 = 6 so 20 + 40 = 60

©White Rose Maths

Bonds to 100 (Tens)	
Notes and Guidance	Varied Fluency
Teachers should focus at this stage on multiples of 10 up to and within 100	Match the 10 frames to the sentences below:
Links should be made again between single digit bonds and tens bonds. Using a 10 frame to represent 100 would be a useful resource	One hundred equals eighty 100 = 100 + 0 40 + 60 = 100 plus twenty
to make this link.	Fill in the missing numbers. Use Base 10 to represent the numbers
Mathematical Talk	2+6=8 20+60=
What does the word multiple mean?	$2_+_0=80$ $80=_0+6_$
What does the blue represent? What does the yellow represent?	Continue the pattern $90 = 100 - 10$
Why is it different to a normal 10 frame?	80 = 100 - 20
What patterns can you see? How does this help us to make up our own?	Can you make up a similar pattern starting with the numbers 60, 30 and 90?

55

Bonds to 100 (Tens)

Reasoning and Problem Solving

Eva thinks the number bond 10 Amir thinks th Who is correct Can you help to understand	ere are 10 different s to 90 using multiples of here are only 5 t? the person who is wrong their mistake?	Amir because 0 + 90 is the same as 90 + 0 Eva has repeated her answers – the multiples have been written the opposite way around.	Image: squares are worth 10
Using multiple number bond following num 20 What do you of bonds for e If 80 has 5 bo 90 would hav	es of 10, how many s are there for the hbers? 30 40 50 notice about the amount each number? onds, predict how many re.	20 and 30 both have 2 40 and 50 both have 3 When the tens digit is odd it has the same number of bonds as the previous tens number. 90 would also have 5	 Triangles are worth 20 Circles are worth 30 Can you complete the grid above so that all horizontal and vertical lines equal 60? Can children create another pattern on an empty grid where each line equals 60? How many possible ways are there to solve this?

Solution

Lots of possible solutions available.

Add and Subtract 1s

Notes and Guidance

Children should start seeing the pattern when we add and subtract 1 and comment upon what happens.

This is the step before finding ten more than or ten less than, as bridging beyond a 10 should not be attempted yet.

The pattern should be highlighted also by adding 2 (by adding another one) and then adding 3

Mathematical Talk

- What happens when we add 2?
- What is the link between adding 1 and adding 2?
- What about if we want to add 3?
- How can a bead string help when we are adding 1, 2, 3 etc.?
- Where will be the best place to start on each number track? Why?

Varied Fluency

Example

There are 4 children playing in a park. One more child joins them so there will be 5 children playing together.

Continue the pattern

22 = 29 - 722 = 28 - 6

Can you create an addition pattern by adding in ones and starting at the number 13?

Continue the number tracks below.

Add and Subtract 1s

Reasoning and Problem Solving

True or False?These four calculations have the same answer. $1+4+2$ $4+2+1$ $2+4+1$ $4+1+2$	True, because they all equal 7 and addition is commutative.	Jack's house Annie's house Jack lives 5 km from school. Annie lives 4 km from school in the	
These four calculations have the same answer. 7-3-2 $2-3-73-2-7$ $7-2-3$	False, because subtraction isn't commutative.	same direction. What is the distance between Jack and Annie's houses? After travelling to and from school, Jack thinks that he will walk 1 km more than Annie. Is he correct? Explain your answer. What will be the difference in distance walked after 2 school days?	1 km No, he will walk 2 km further. 1 km on the way to school and 1 km on the way home. 4 km

10 More and 10 Less

Notes and Guidance

Teaching needs to focus on the importance of the tens digit. Using a 100 square, explore with the children what happens to the numbers in the columns.

Draw attention to the idea that the tens digit changes while the ones digit remains the same.

Children will need to see how the number changes with concrete materials before moving onto more abstract ideas.

Mathematical Talk

What's the same? What's different?

Will you start with 35 or 55? Why?

When you look at a hundred square, what do you notice about the numbers that are ten more and ten less than 27?

Which direction will your finger move on a hundred square if you are finding ten more/ten less?

Varied Fluency

Continue the number tracks below.

3	35 45	55			
---	-------	----	--	--	--

- ⁷ Using a 100 square, circle the number that is 10 more than 27 Circle the number that is 10 less than 27 Repeat in different colours for different numbers. What do you notice?
- Using concrete materials, complete the missing boxes.

10 less	Number	10 more
	••	
2	12	22
	37	

10 More and 10 Less

Reasoning and Problem Solving

SALE	Red Apple 5 p Green Apple 12 p Banana 25 p Lemon 58 p	Crayons'o Crayons'o Crayons'o Crayons'o Crayons'o Crayons'o Crayons'o Crayons'o	43 They will have four full packs left which is four tens, and three crayon which represents three ones.
Mo says, I know that 10 more than 72 is 82 because Lonly have	Yes, because when you add ten you aren't adding ones.	How many crayons do they have left? Explain your reasoning.	
to look at the tens digit. Is he correct? Explain your reasoning.		Rosie is counting backwards in 10s. She says forty-nine, thirty-nine, twenty- nine and then stops. What numbers comes next and why?	19 because you take one ten away from 29, then 9

60

Add and Subtract 10s

Notes and Guidance

Children should make use of place value to add and subtract 10s from a given number within 100 The key teaching point again is the importance of the tens digit within the given numbers, and children should be encouraged to see the relationship.

For example 64 + 20 = 84

Mathematical Talk

What is the number sentence that will help us to find the first missing number in the number track?

What is the same/different about the next number sentence?

Why is there a blank ones box?

Which column changes?

Which column stays the same?

Varied Fluency

Continue the number track by adding 20 each time.

23		
----	--	--

Use the place value charts and concrete materials to complete the calculations.

Tens	Ones
	24

Tens	Ones

2 + 4	3 0
5	6
3	0

Add and Subtract 10s

Reasoning and Problem Solving

Add by Making 10

Notes and Guidance

Children add numbers within 20 using their knowledge of number bonds.

It is important that children work practically using ten frames and/or number lines to help them see how number bonds to 10 can help them calculate.

They will move towards using this as a mental strategy.

Mathematical Talk

How can you partition a number and use your number bonds to 10 to help you?

How does using the counters help you to see this strategy?

How does using a number line help you to see this strategy?

Varied Fluency

Add by Making 10

Reasoning and Problem Solving

11 12 13 14 15 16 17 18 19 2

Teddy and Eva are adding together 7 and 8 using a number line.

Teddy shows it this way:

Eva shows it this way:

Who is correct? Explain your answer. They are both correct because addition is commutative and the answer to both calculations is 15

Teddy has started with 7 and partitioned the 8 into 3 and 5 to make 10

Eva has started with 8 and partitioned the 7 into 2 and 5 to make 10

Dexter uses ten frames to calculate eight plus six. He says, 8 + 6 = 16 Do you agree? Explain why.	Dexter is wrong because the answer should be 14. He should have filled the first ten frame before starting a second one.
Annie is calculating $8 + 6$ Which of these methods is most helpful? Why? $8 + 6 \qquad 8 + 6$ $5 1 \qquad 4 2$ $8 + 6 \qquad 8 + 6$ $6 2 \qquad 4 4$	Partitioning the 6 into 4 and 2 is helpful as 8 and 2 make 10 Partitioning the 8 into 4 and 4 is helpful as 6 and 4 make 10

Add 2-digits and 1-digit

Notes and Guidance

Before crossing the 10 with addition, children need to have a strong understanding of place value. The idea that ten ones are the same as one ten is essential here. They need to be able to count to 20 and need to be able to partition two-digit numbers in order to add them. They need to understand the difference between one-digit and two-digit numbers and line them up in columns. In order to progress to using the number line more efficiently, children need to be secure in their number bonds.

Mathematical Talk

Using Base 10, can you partition your numbers?

Can we exchange 10 ones for one ten?

How many ones do we have? How many tens do we have?

Can you draw the Base 10 and show the addition pictorially?

Varied Fluency

17 + 5 =

Can you put the larger number in your head and count on the smaller number? Start at 17 and count on 5

Can we use number bonds to solve the addition more efficiently?

We can partition 5 into 3 and 2 and use this to bridge the 10

🔰 Find the total of 28 and 7

- Partition both the numbers.
- Add together the ones.
- Have we got 10 ones?
- Exchange 10 ones for 1 ten.
- How many ones do we have?
- How many tens do we
 have?
 ©White Rose Maths

Add 2-digits and 1-digit

Reasoning and Problem Solving

Always, Sometimes, Never

I am thinking of a twodigit number, if I add ones to it, I will only need to change the ones digit.

Explain your answer.

Sometimes, because if your ones total 10 or more you will have to exchange them which will change the tens digit.

Here are three digit cards.

Place the digit cards in the number sentence.

How many different totals can you find?

What is the smallest total?

What is the largest total?

67 + 8 = 75 68 + 7 = 75 76 + 8 = 84 78 + 6 = 84 86 + 7 = 9387 + 6 = 93

75 is the smallest total.

93 is the largest total.

Subtraction – Crossing 10 (1)

Notes and Guidance

For the first time, children will be introduced to subtraction where they have to cross ten. This small step focuses on the strategy of partitioning to make ten.

Children should represent this using concrete manipulatives or pictorially to begin with. Ten frames and number lines are particularly useful to model the structure of this strategy.

Children will move towards using this as a mental strategy.

Mathematical Talk

How can you partition a number to help you subtract?

How does using the counters help you to see this strategy?

How does using a number line help you to see this strategy?

Can you think of another way to represent this problem?

Varied Fluency Now there are 8 First there were 13 Then 5 were eaten jam tarts jam tarts. 10 11 12 13 Rosie has used the ten frames to calculate 12-510 3 Use her method to complete: 10

67

Subtraction – Crossing 10 (1)

Reasoning and Problem Solving

Which of these methods is most helpful? Why?

16 - 7 8 8

Rosie is calculating 16 - 7

16 - 7 (3) (4)

16 - 7

16 – 100

Could you find a way to partition 16 to help you subtract 7?

If you partition 16 into 7 and 9, you can subtract 7

Partitioning the 7

into 6 and 1 is

subtract the 1

Teddy works out 15 – 6 This is Teddy's working out:	Teddy has used the = sign incorrectly.		
15 - 5 = 10 - 1 = 9	10 – 1 is not equal to 15 – 5		
Why is Teddy's working out wrong?	He should have written: 15 – 5 = 10 10 – 1 = 9		
Use <, > or = to make the statements correct. I can do this without working out any answers.			
17 – 5 🚺 12 – 5	17 – 5 > 12 – 5		
14 – 4 🚺 18 – 8	14 - 4 = 18 - 8		
11 – 7 🚺 11 – 4	11 - 7 < 11 - 4		
s Whitney correct? Explain how you know.			

Subtract 1-digit from 2-digits

Notes and Guidance

Just as with addition, children need to have a strong understanding of place value for subtraction. Children need to be able to count to 20 and need to be able to partition two-digit numbers in order to subtract from them. They need to understand the difference between one-digit and two-digit numbers and line them up in columns. In order to progress to using the number line more efficiently, children need to be secure in their number bonds.

Mathematical Talk

Are we counting backwards or forwards on the number line?

Have we got enough ones to subtract?

Can we exchange a ten for ten ones?

How can we show the takeaway? Can we cross out the cubes?

Varied Fluency

22 - 7 =

Can you put the larger number in your head and count back the smaller number? Start at 22 and count back 7

Can we use number bonds to subtract more efficiently?

We can partition 7 into 5 and 2 and use this to bridge the 10

Subtract 8 from 24

Tens Ones $\begin{array}{c} 1 \\ \chi \end{array} \begin{array}{c} 4 \\ - \\ 1 \end{array} \begin{array}{c} 6 \end{array}$

- Do we have enough ones to take 8 ones away?
- Exchange one ten for ten ones.
- Take away 8 ones.
- Can you write this using the column method?

Subtract 1-digit from 2-digits

Reasoning and Problem Solving

Jack and Eva are solving the subtraction 23 – 9 Here are their methods: I put 9 in my head and counted on to 23

> l put 23 in my head and counted back 9

Who's method is the most efficient?

Can you explain why?

Eva

Can you think of another method to solve the subtraction.

Eva's method is most efficient because there are less steps to take. The numbers are quite far apart so Jack's method of finding the difference takes a long time and has more room for error.

Mo is counting back to solve $35 - 7$		Mo is not correct
He counts		as he has included 35 when counting
35, 34, 33, 32, 31, 30, 29		back.
Is Mo correct?		This is a common mistake and can
Explain your answer.		be modelled on a number line.
Match the number sente number bonds that make more efficient.	nces to the e the method	42-5 42-2-3
42 — 5	42 - 2 - 3	43-8 43-3-5
42 — 7	43 – 3 – 3	
43 — 8	43 — 3 — 5	
43 — 6	42 - 2 - 5	

Add 2-digit Numbers (1)

Notes and Guidance

- This step is an important pre-requisite before children add two-digit numbers with an exchange.
- Focus on the language of tens and ones and look at different methods to add the numbers including the column method.
- It is important that teachers always show the children to start with the ones when adding using the column method.

Mathematical Talk

- Can you partition the number into tens and ones?
- Can you count the ones? Can you count the tens?
- Can you show your addition by drawing the Base 10 to help?
- How could you represent the problem?

Varied Fluency

Find the sum of 34 and 23

- 4 ones + 2 ones = _____
- 6 tens + 1 ten = _____
 - ____ tens + ____ ones = __

Mo has 41 sweets. Whitney has 55 sweets.

How many sweets do they have altogether?

Add 2-digit Numbers (1)

Reasoning and Problem Solving

Annie has 12 marbles.	Ron has 25 marbles	What digits could go in the boxes?	Possible answers: 1 and 7
Ron has 13 marbles more than Annie. How many marbles do they have	nore than Annie. Altogether they have 37 marbles.	2 + 5 = 87	2 and 6 3 and 5 4 and 4
altogether?			5 and 3
Amir has been asked to complete the bar model.	Amir has found the digit totals and put the digits together to make 78		7 and 1 Interesting discussion could be had around is 1
The whole is 78 because $5 + 2 = 7$ and $1 + 7 = 8$	The correct answer is 69 and this could be		and 7 different to 7 and 1? Etc.
Explain to Amir what he has done wrong. How could you help him work out the correct total?	shown by using Base 10 and a place value chart.		

Add 2-digit Numbers (2)

Notes and Guidance

Children use Base 10 and partitioning to add together 2digit numbers including an exchange. They could be encouraged to draw the Base 10 alongside recording any formal column method.

They have already seen what happens when there are more than 10 ones and should be confident in exchanging 10 ones for one 10.

Mathematical Talk

Can you represent the ones and tens using Base 10? What is the value of the digits? How many ones do we have altogether? How many tens do we have altogether? Can we exchange ten ones for one ten? What is the sum of the numbers? What is the total? How many have we got altogether?

Varied Fluency

	64	+	17	=	
--	----	---	----	---	--

	64
4 ones + 7 ones =	<u>+ 1 7</u>
	11
6 tens + 1 ten =	<u>+ 70</u>
	81

_____ tens + _____ ones = _____

Find the sum of 35 and 26

- ||| ¥ || :::
- Partition both the numbers.
- Add together the ones. Have we got 10 ones?
- Exchange 10 ones for 1 ten.
- How many ones do we have?
- Add together the tens. How many dowe have altogether?

Class 3 has 37 pencils. Class 4 has 43 pencils.

How many pencils do they have altogether?

Add 2-digit Numbers (2)

Can you create a calculation where there will be an exchange in the ones and your answer will have two ones and be less than 100?	There are lots of possible solutions. E.g. 33 + 29 = 62	Find all the possible pairs of numbers that can complete the addition.	13 + 29 19 + 23 14 + 28
How many different ways can you solve 19 + 11? Explain your method to a partner.	Children might add the ones and then the tens.	$\frac{+2}{42}$	18 + 24 15 + 27 17 + 25
Use concrete or pictorial resources to help explain your method.	notice that 1 and 9 are a number bond to 10 which makes the calculation easier to complete mentally.	How do you know you have found all the pairs? What is the same about all the pairs of numbers?	16 + 26 All the pairs of ones add up to 12

Subtract with 2-digits (1)

Notes and Guidance

This step is an important step before children start to look at subtraction where they cross a tens boundary. Children need to use concrete materials but also draw images of the Base 10 so they can independently solve problems. Some children might think that they need to 'build' both numbers in the calculation, unpicking this misconception through modelling and discussion will help develop their understanding.

Mathematical Talk

Do we need to make both numbers in the subtraction before we take away?

Which number do we need to make? The larger number or the smaller?

What are the numbers worth? Tens or ones?

What happens if we have nothing left in a column? Which number do we write?

Varied Fluency

78 minus 34 =
8 ones – 4 ones =
7 tens – 3 tens =
We have tens and ones.

34 — 13 = ____

- 34 30 4
- -10 -3
 - 20 1

Subtract 13 from 28

Tens	Ones		

- Partition the number 34.
- Partition 13 and subtract the ones and the tens.
- Place the partitioned number back together.

2	8
 1	3
1	5

Subtract with 2-digits (1)

Annie has 33 stickers.	Here the children	Find the missing numbers.	9 and 7
Dexter has 54 stickers.	are working out the difference.		8 and 6
How many more stickers does Dexter	Children might use	6	7 and 5
have?	subtraction to	_ [2][]	6 and 4
What method did you use to solve the problem?	solve the problem or they might	42	5 and 3
	count on to find		4 and 2
	the difference. Dexter has 21	Is this the only possible solution? Explain	3 and 1
		your answer.	2 and 0
	more stickers than	Make the numbers using Base 10 to help	
	Annie.	you find your answer.	

Subtract with 2-digits (2)

Notes and Guidance

Children use their knowledge that one ten is the same as ten ones to exchange when crossing a ten in subtraction.

Continue to use concrete manipulatives (such as Base 10) and pictorial representations (such as number lines and partwhole models) to develop the children's understanding.

The skill of flexible partitioning is useful here when the children are calculating with exchanges.

Mathematical Talk

Have we got enough ones to take away?

- Can we exchange one ten for ten ones?
- How many have we got left?
- What is the difference between the numbers?
- Do we always need to subtract the ones first? Why do we always subtract the ones first?
- Which method is the most efficient to find the difference, subtraction or counting on?

Varied Fluency

Use the number line to subtract 12 from 51

51

Can you subtract the ones first and then the tens? Can you partition the ones to count back to the next ten and then subtract the tens?

42 – 15 =

40

-10

We can't subtract the ones. Can we partition differently? 42 30 12 -10 -5 20 7 Now we can subtract the ones and then subtract the tens. 42 - 15 = 27

Subtract with 2-digits (2)

Find & Make Number Bonds

Notes and Guidance

- Children see that working systematically helps them to find all the possible number bonds to 20
- They will use their knowledge of number bonds to 10 to find number bonds to 20
- Using examples such as, 7 + 3, 17 + 3 or 7 + 13 encourages children to see the link between bonds to 10 and bonds to 20 and reinforces their understanding of place value.

Varied Fluency

What number bond is represented in the pictures?

There are <u> </u>								
There are blue counters.								
Altogether there are <u> </u>								
+=+=								
There are red counters.								
There are blue counters.								
Altogether there are <u> </u> counters.								

Continue the pattern to find all the number bonds to 12 How do you know you have found them all?

Mathematical Talk

What strategy could you use to make sure you find all the number bonds?

What number bond can we see? How does this help us find the number bond to 20?

How does knowing your number bonds to 10 help you to work out your number bonds to 20?

Find & Make Number Bonds

Reasoning and Problem Solving

Use equipment to represent each of the calculations below.

What is the same? What is different?

> 7 + 3 = 1017 + 3 = 2020 = 7 + 13

Explain your thinking.

Children may notice that the =is in a different place. They might notice that the number of ones remains the same and that a ten has been added to create a number bond to 20 Mathematical equipment such as ten frames or Base 10 will make this clear.

80

Jack represents a number bond to 20 in the part whole model. 20 13 7 Can you spot his mistake?	Possible response: Jack has put 20 as a part but it should be a whole.
True or false? There are double the amount of numbers bonds to 20 than there are number bonds to 10 Prove it – can you use a systematic approach?	False – there are 11 number bonds to 10 and 21 number bonds to 20 Children can show this in various ways.

Bonds to 100 (Tens and Ones)

Notes and Guidance

Here children build on their earlier work on number bonds to 100 with tens together with number bonds to 10 and 20

They use their new knowledge of exchange to find number bonds to 100 with tens and ones.

Using hundred squares, Base 10, bead strings etc. will help the children develop their understanding.

Mathematical Talk

How many more do we need to make 100?

How many tens are in 100?

If I have 35, do I need 7 tens and 5 ones to make 100? Explain why.

Can you make the number using Base 10?

Can you add more Base 10 to the number to make 100?

Varied Fluency

Use a 100 square. If:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

37

- 40 squares are shaded, how many are not shaded?
- 45 squares are shaded, how many are not shaded?
- 54 squares are shaded, how many are not shaded?
- Tommy is making 100 with Base 10 How much more does he need if he has:

25 + = 100 +69 = 100 $100 - _ = 11$

Bonds to 100 (Tens and Ones)

Teddy has completed the missing number sentence. 46 + 64 = 100					Teddy is incorrect. He has seen number bonds to 10 but forgotten		Complete the pattern. 15 + 85 = 100 20 + 80 = 100 25 + 75 = 100	30 + 70 = 100 $35 + 65 = 100$ The first numbers are going up in
Is Teddy correct? Explain your answer.				that he would need to exchange ten ones for one ten. 46 + 64 = 110		30 + = 100 + = 100 Can you explain the pattern?	second numbers are going down in fives. All of the number sentences	
Each row and column adds up to 100. Complete the grid.).	454510403525152065			are number bonds to 100	
	45	45						
		35						
	15		65					

Add Three 1-digit Numbers Varied Fluency **Notes and Guidance** Use ten frames and counters to add the numbers 4 + 3 + 6Children need to use their knowledge of commutativity to find the most efficient and quick way to add the three one-digit Can you add the numbers. 4 + 6 = 10numbers in a different way to find a number bond to 10 + 3 = 13They look for number bonds to 10 to help them add 10? more efficiently.

Mathematical Talk

Can we change the order of the numbers to make the calculation easier?

Why are we allowed to change the order of the numbers?

Which two numbers did you add first? Why?

What if you added a different two numbers first, would your answer be the same?

5 2 4 3 7 8 5 3

Find the totals of each row and column.

Use <, > or = to compare the number sentences.

$$5+4+6$$
 $6+5+4$ $7+3+8$ $7+7+3$ $9+2+5$ $8+3+5$ $8+4+2$ $2+5+8$

Add Three 1-digit Numbers

Always, Sometimes, Never	Always, children may recognise	Take 3 consecutive one-digit numbers, e.g. 4, 5 and 6.	1+2+3=6 2+3+4=9 3+4+5=12
odd + odd + odd = odd Use one-digit numbers to test if this is true e.g.	that two odds make an even so three odds make an odd.	Add them together. What do you notice?	4 + 5 + 6 = 15 5 + 6 + 7 = 18 6 + 7 + 8 = 21 7 + 8 + 9 = 24
3 + 5 + 7		Choose different groups of 3 consecutive one-digit numbers and see if there is a	If we order the
Which numbers would you add together first in the following number sentences? Why would you add those first?	3 and 7 first – number bond to 10	pattern.	groups, we can see that the totals go up by 3 each time. This is because we are adding one to
3 + 5 + 7 =	8 and 2 first – number bond to		each number each time so we are
8 + 2 + 6 =	10 4 and 4 first -		adding 3 extra altogether.
4 + 3 + 4 =	double a number.		
Is there always an easier order to add three one-digit numbers?	No, e.g. 5 + 6 + 7		

Year 2 | Autumn Term | Week 9 to 10 - Measurement: Money

Overview

Small Steps

Recognising coins and notes	R
Count money – pence	
Count money – pounds (notes and coins)	
Count money – notes and coins	
Select money	
Make the same amount	
Compare money	
Find the total	
Find the difference	
Find change	
Two-step problems	

Notes for 2020/21

Children may have missed learning on money in Year 1.

Before starting this block ensure that children are familiar with coins and notes.

Recognising Coins

Notes and Guidance

Children will recognise and know the value of different denominations of coins.

Children will use their knowledge of place value to match coins with equivalent values. For example, ten 1 pence coins is equivalent to one 10 pence coin. This could be linked with the concept of exchanging.

Teachers could use coins to support this activity (or pictures where appropriate).

Mathematical Talk

How have you organised the coins?

What is the value of each coin? How do you know?

How many 1 pence coins will you need to make 2 p? 5 p? 10 p? 20 p? 50 p? 1 pound?

How many 1 pound coins will you need to make 2 pounds?

Varied Fluency

R

Recognising Coins

Reasoning and Problem Solving

Dora says:	l coins are round. a?	Dora is incorrect. A 50 p coin isn't round. A 20 p coin isn't round. A £1 coin isn't round.		The tooth fairy left some money for two children.	Jack is wrong because altho the 50 pence is physically b it only has a v of 50 pence, the pound co a value of 100 pence.
Which is the odd one of 20 p 8 p 8 p 9 Why?	out? 2 p 10 p	8 p is the odd one out because we do not have an 8 p coin.	Ť	Jack thinks he has more money because his coin is physically bigger. Explain why Jack is wrong.	

ough coin bigger value but in has

Recognising Notes

Notes and Guidance

Once children are able to identify and recognise coins they need to be able to recognise notes.

Children use their understanding of place value to see that one note can represent many pounds, for example, a ten pound note could be 10 pound coins or 3 two pound coins and 4 one pound coins. Children also need to be aware that one note may be worth many times the value of another note.

Mathematical Talk

Can you name each note?

What is the same about each note?

What is different about each note?

How many ____ pound notes are equivalent to a ____ pound note?

Varied Fluency

There are _____ 5 pound notes. There are _____ 10 pound notes. There are _____ 20 pound notes.

What is the value of each note?

Fill in the blanks.

Recognising Notes

Count Money - Pence

Notes and Guidance

This block introduces the $\mathfrak L$ and p symbols for the first time.

Children will count in 1 p, 2 p, 5 p and 10 p coins. Children can also use related facts to count in 20 p coins.

Children do not convert between pounds and pence, therefore children will need to recognise the 50 p coin but they will not count up in 50 p coins.

Mathematical Talk

What is different about the coins you have counted?

Is the group with the most coins always the biggest amount? Why?

What do you notice about the totals?

Are silver coins always worth more than copper coins?

What different ways can you count the coins? Which is the quickest way?

Varied Fluency

Count the money.

р

(ets) (ets)

Count Money - Pence

Count Money - Pounds

Notes and Guidance

Children will continue counting but this time it will be in pounds, not pence. The £ symbol will be introduced. Children must be aware that both coins and notes are used to

represent amounts in pounds.

Children will count in £1, £2, £5, £10 and £20s.

In this year group, children work within 100, therefore they will not count in $\pounds 50s$.

Mathematical Talk

- Do the notes have a greater value than the coins?
- Which is the hardest to count? Which is the easiest? Why?

What do you notice about the amounts?

Does it matter which side the equals sign is?

Can you find the total in a different way?

Varied Fluency

Count Money - Pounds

Ron thinks he has £13	No, because three £2 coins make £6	Explain the mistake.	£7 is the mistake. It is an odd
	£10 and £6 is equal to £16	£2, £4, £6, £7, £8, £10	number. The 2 times table are all even.
	He has mistaken his £2 coins for £1 coins.		When counting in £2s, we would say £2, £4, £6, £8,
Is he correct? Explain your answer.			£10

Count Money – Notes & Coins

Notes and Guidance

In this step, children will build on counting by bringing pounds and pence together.

Decimal notation is not used until KS2 therefore children will write the total using 'and' e.g. \$5 and 30 p rather than \$5.30

Children will not count across £1. They will count the pounds and pence separately before putting them together.

Mathematical Talk

How did you work out the total amount of money?

What strategy did you use to count the money when there is pounds and pence?

Explain what to do when the pounds and pence are mixed up.

Varied Fluency

- There is £____ and ____p.
- Complete the part-whole model.

What's the same and what's different about the parts?

- Fill in the gaps to make the statements correct.
 - $\pounds 10 + \pounds 5 + 50 p = \pounds_{and} and_{p}$
 - $\pounds 20 + \pounds 2 + 10 p + 10 p + 2 p = \pounds_{----} and ____p$
 - £5 + £___ + 50 p + 20 p + 20 p + 1 p = £10 and ____p

Count Money – Notes & Coins

Select Money

Notes and Guidance

Children select coins to make an amount, from a set of coins given to them. They will use these practically, draw them and write the abstract amounts.

They will continue to use both pounds and pence to embed previous learning.

Children are continuing to work on recognising money by selecting the correct coins or notes from a wide range.

Mathematical Talk

How do you know you have made 56 p? Is your answer the same as your partner? Can you find any other ways to make this amount?

Does it matter if you say pence or pounds first?

Does this change the total?

Can you show this amount in a different way?

Varied Fluency

👕 Circle 56 p.

Which does **not** show 50 p?

Select Money

Rosie says,	No, because 3	Use the mon
I have 43 p in silver coins.	pence can only be made with copper coins.	You can only Cross them them. ^{Descent}
Do you agree?		
Explain why.		£10
Annie and Ron both claim to have 90 p.	Yes, they can	(and 1
Annie has 3 coins and Ron has 4 coins.	because: Annie = 50 p,	Circle the od
Could they be correct?	20 p, 20 p. Ron = 50 p, 20 p,	23
Which coins could they have?	10 p, 10 p.	
		Explain your

amount?

Make the Same Amount Varied Fluency **Notes and Guidance** Match the amounts. Children explore the different ways of making the same amount. As before, they will not count pence over into pounds. Examples need to be modelled where pounds and pence are together but children need to continue to be encouraged to count the pounds and pence separately. Complete the part-whole models. Mathematical Talk 30 p 30 p Can the same amount be made using different coins? How did you compare the amounts? How is your way different to a partner? The Base 10 represents money. What coin is represented by each Can you swap a coin/note for others and still make the same circle? What is the smallest amount of coins you can use to make

©White Rose Maths

Make the Same Amount

Reasoning and Problem Solving

Ma bel

Υοι

ke 50 p three ways using the coins	Example answers:	How many ways can you make 10 p	Example answers:
ow.	20 p, 20 p, 10 p	using only copper coins?	2 p, 2 p, 2 p, 2 p,
u can use the coins more than once.	10 p, 10 p, 10 p,	Did you use a strategy?	2 р
	10 p, 5 p, 5 p		2 p, 2 p, 2 p, 2 p, 1 p, 1 p
	1 p (50 times)		ι þ, i þ

100

Compare Money

Notes and Guidance

Children compare two different values in either pounds or pence.

Children will see examples with both pounds and pence, but they will only focus on one of these - the other must be the same e.g. $\pounds 3$ and 10 p > $\pounds 2$ and 10 p where 10 p is the constant.

Children recap comparing vocabulary such as greater/less than and use the inequality symbols.

Mathematical Talk

What do you notice about the amounts you have compared?

What's the same? What's different?

How do you know who has the most, when they both have 64?

Can you add a value that will go in between the greatest and the least?

Varied Fluency

Who has the most? Who has the least? How do you know?

Compare Money

Reasoning and Problem Solving

Annie has three coins in her hand.	It depends on the coins Annie has.	True or False?	Only true when 5 p is the silver
Jack says, I have more than you because I have a 50 pence coin.	Children explore and show e.g. 20 p, 20 p, 20 p > 50 p	5 copper coins can be worth more than 1 silver coin.	coin. Children should explore different true and false answers.
Is he correct? Explain why.	5 p, 2 p, 2 p < 50 p	Four 5 pence coins are worth more than two 10 pence coins. () () () () () () () () () () () () ()	No, they are equal to each other. They both make 20 p.

102

Find the Total

Notes and Guidance

Children will build on their knowledge of addition to add money including:

- 2-digit and 2-digit
- 2-digit and ones
- 2-digit and tens
- 3-single digits

Children will be encouraged to use different methods to add the amounts of money, such as count on, partitioning and regrouping.

Mathematical Talk

How did you find the missing amounts? Share your strategies with a friend.

Was your method different to a friend?

What is the most efficient method? Why?

Can you write a worded question for a friend?

What was the greatest amount you found?

Varied Fluency

Complete the table.

Pounds	Pence	Total	
£4	25 p	£ andp	
£2		£2 and 40 p	
	65 p	£20 and 65 pence	
		£15 and 20 p	
	55 pence		

Complete the bar models.

🍞 Amir buys bread and eggs.

How much does he spend?

103

Find the Total

Reasoning and Problem Solving

Dexter has these coins and notes.

He makes an amount greater than £20 but less than £30

Draw the money he could have used. You can use each coin or note more than once.

How many different ways can you find

	Possible answers:	Here	is a shopping list
	£10, £10 and £5		ltem
	makes £25		Rubber
			Ruler
	£10 £5 £5 £2		Pencil
C	makes £22		Crayon
	Ftc		Pen
			Glue
?		 I I C C	spend exactly 50 tems did I buy? bought two of th cost me 90 p. Wh Choose two items Jifferent amounts What is the closes 55 p?

104

t

ltem	Price
Rubber	20 p
Ruler	18 p
Pencil	32 p
Crayon	27 р
Pen	45 p
Glue	36 p

- 0 p. Which two
- he same item and it hat was the item?
- s. How many s can you make?
- st you can get to

The ruler and the pencil as 18 p and 32 p makes 50 p.

Two pens as 45 p and 45 p makes 90 p.

Children to explore the totals that can be made by adding two items together.

The rubber and the pen would cost 65 p as 20 p and 45 p sum to 65 p.

Find the Difference

Notes and Guidance

Children expand their knowledge of addition and subtraction strategies by specifically finding the difference between two amounts.

In this step, children should see both counting on and counting back being modelled to them.

They need to discuss which is the most efficient for different questions.

Mathematical Talk

Which costs more? How do you know? How can you work out how much more?

What's the difference?

How much less?/How many fewer?

What method did you use to work this out?

Varied Fluency

Work out the difference between the cost of a bag of sweets and a bar of chocolate.

Find the difference between the amounts of money Amir and Mo

Amir

have.

Alex has £2 and 15 p. Rosie has £2 and 40 p.

How much more money does Rosie have than Alex?

Find the Difference

I have 57 p.	Example answers: Mo could have	Jack has 2 p.	4 × 2 p 3 × 2 p and 2 ×
	• 50 p, 20 p, 1 p	Eva nas IU p.	2 × 2 p and 4 ×
Whitney	• 50 p, 20 p, 2 p	Both of them have a 2 p coin.	1p 1 x 2 a and 6 x
I have 2 silver coins and 1 bronze coin. Mo	Mo could have the same by:	What other coins could Eva have?	1 x 2 p and 6 x 1 p 8 x 1 p 5 p and 2 p and
What could Mo have?			1p
Work out the difference between the amounts.	 by: 5 p, 5 p, 1 p 20 p 10 p 2 p 		эрапозхтр
How many different answers can you find?	- 20 μ, 10 μ, 2 μ		

Find Change

Notes and Guidance

Children build on their subtraction skills by finding change from a given amount. They need to identify amounts from the coins given, write the calculations and choose efficient methods.

In this step, children will be introduced to converting $\pounds 1$ to 100 p to be able to subtract from $\pounds 1$. This links to their number bond knowledge to 100.

Mathematical Talk

How much does Dora have? How do you know? Can you write a calculation to work out how much she will have left?

Why is it important to use the \pounds or p symbol?

What strategy did you use to find the change? Did you use concrete objects to help?

Varied Fluency

Dora has these coins.

She spends 53 p.

What money will she have left? What coins could it be?

Write the calculation and find the amount of change.

How much change will he receive?

Find Change

Reasoning and Problem Solving

I have 20 p.

My change is more than 5 p but less than 10 p.

What could I have bought?

Sweet: 7 p

Apples: 18 p

Chocolate: 12 p

Banana: 4 p

Example answers:

Chocolate bar or a sweet and banana.

Here is my change.

900 S

What could I have paid with and how much would the item have been?

I paid for my shopping with one coin.

Could have paid with a 20 p coin and it would have cost 3 p.

Could have paid with a 50 p coin and it would have cost 33 p.

Could have paid with a £1 coin and it would have cost 83 p.

Could have paid with a £2 coin and it would have cost £1 and 83 p.

Two-step Problems

Notes and Guidance

Children draw together all of the skills they have used in this block and consolidate their previous addition and subtraction learning.

Children may need some scaffolding to see the different steps.

Bar modelling is really useful to see the parts and wholes, and supports children in choosing the correct calculation.

Mathematical Talk

Where does the £33 go in the bar model? How can you find the total?

Here is a one step problem. Can you think of a second step?

Can you write your own two step word problem?

Did you use a concrete or pictorial representation to help you?

Varied Fluency

Rosie has £33 in her money bank, and gets £40 more. Fill in the bar model and write a calculation to show her total.

She then buys a top for $\pounds 25$. Complete the bar model and write a calculation to show what she has left.

Amir has these coins.

He spends 54 p. How much does he have left?

A scarf is £12 and a bag is £25 Whitney buys one of each and pays with a £50 note. How much change will she receive?

Two-step Problems

Reasoning and Problem Solving

Ghost Train: 90 p

Annie finds a 20 p coin.

She puts it with her other three 20p coins.

Does Annie have enough to ride the ghost train?

Explain why.

No, because she only has 80 p.

She would need 10 p more.

90 p > 80 p

Alex has 90 pence. She bought a rubber for 30 pence and wants to buy a pencil.

Pencil: 70 p

The shopkeeper will not sell her the pencil. Explain why. 90 p - 30 p = 60 p

70 p > 60 p

She does not have enough money to buy the pencil.

Year 2 | Autumn Term | Week 11 – Number: Multiplication & Division

Notes for 2020/21

Use this time to recap the basics of multiplication. Year 2 multiplication will be covered in the Spring term.

Making Equal Groups

Notes and Guidance

Children begin by using stories which link to pictures and concrete manipulatives to explore making equal groups and write statements such as 'there are ___ groups of ___.' They will recognise and explain how they know when they are equal or not. Children see equal groups that are arranged differently so they understand that the groups look different but can still be equal in number.

At this stage children do not explore multiplication formally.

Mathematical Talk

How do I know that the groups are equal? What does equal mean?

How many pencils are there in each pot? How can I complete the sentence to describe the groups?

What's the same and what's different?

Are Josh's groups equal or unequal? How can we make them equal?

Varied Fluency

Are the groups equal or unequal? Write a label for each.

Complete the sentences

There are ____ groups of ____ pencils.

There are ____ groups of ____ flowers.

Josh is drawing equal groups of 3

Complete his drawing.

Making Equal Groups

Reasoning and Problem Solving

Dora and Rosie are making hay bundles.

Who has made equal groups?

Dora

Explain how you know.

Rosie

because she has 3 groups of 3 hay bundles.

Possible answer:

Dora has made

equal groups

Rosie has two unequal groups. Use concrete materials or pictures to complete the questions.

Alex has 4 equal groups. Show me what Alex's groups could look like.

Whitney has 3 unequal groups. Show me what Whitney's groups could look like.

Children will show 4 groups where there are the same amount in each group for Alex and 3 groups that are unequal for Whitney.

Encourage children to do this in more than one way.

Add Equal Groups

Notes and Guidance

Children use equal groups to find a total. They focus on counting equal groups of 2, 5 and 10 and explore this within 50.

Children could begin by linking this to real life, for example animal legs, wheels, flowers in vases etc.

Stem sentences alongside number sentences can help children link the calculation with the situation. Ensure children have the opportunity to say their sentences aloud.

Mathematical Talk

How many apples are there in each bag? Do all of the bags have an equal number of apples? How many equal groups can you see?

How can we represent this with counters/cubes/on a number line/in a number sentence etc?

What other equipment could you use to represent your pattern? What's the same? What's different?

Which is more, 3 groups of 10 or 4 groups of 5? Prove why.

Varied Fluency

How many wheels altogether?

রু 🖓 জু 🖉 জু 🖉

2+2+2+2+2=

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

How many fingers altogether?

5+5+5=

- How many apples are there? Complete the sentences.
- 5+5+5+5=
- There are _____ apples.
- There are _____ groups of _____ apples which is equal to _____
- How many fish are there? Complete the sentences.

Can you show this using ten frames?

Add Equal Groups

Reasoning and Problem Solving

116

Make Arrays

Notes and Guidance

Children begin to make arrays by making equal groups and building them up in columns or rows.

They use a range of concrete and pictorial representations alongside sentence stems to support their understanding.

Children also explore arrays built incorrectly and recognise the importance of columns and rows.

Mathematical Talk

How many equal groups do I have? How many in each group? Can I represent my apples with counters?

What is the difference between columns and rows? How many counters in each row? How many counters in each column?

How can I record my array with a number sentence?

Varied Fluency

Build an array with counters to represent the apples. Complete the sentences.

There are	apples in each row.
There are	rows.

There are _____ apples altogether.

Array	Description - columns	Description - rows	Totals
90000 90000	5 columns 2 cookies in each column	2 rows 5 cookies in each row	2+2+2+2+2=10 5+5=10
0000	columns donuts in each column	rows donuts in each row	
	columns fish in each column	rows fish in each row	
	3 columns 5 cupcakes in each column	5 rows 3 cupcakes in each row	

Make Arrays

Reasoning and Problem Solving

Teddy and Alex are writing number sentences to describe the array.

Who do you agree with? Explain why.

Possible answer: Whitney has made a mistake because her array is not in columns. There are an unequal amount of squares in each row.

Possible answer: They are both right. Teddy has counted the columns. Alex has counted the rows. Eva begins to make an array with 40 counters. She has finished her first row and her first column. Complete her array.

Write two different number sentences to describe the finished array.

Possible answer: Array showing 10 + 10 + 10 + 10 = 40 Or 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 =

40

Spring Scheme of Learning

Year(2)

#MathsEveryoneCan

2020-21

New for 2020/21

2020 will go down in history. The world has changed for all of us.

We want to do as much as we can to support children, teachers, parents and carers in these very uncertain times.

We have amended our schemes for 2020/21 to:

- \bigstar highlight key teaching points
- ★ recap essential content that children may have forgotten
- ★ flag any content that you might not have covered during the school closures period.

We hope these changes will add further value to the schemes and save you time.

Lesson-by-lesson overviews

We've always been reluctant to produce lesson-bylesson overviews as every class is individual and has different needs. However, many of you have said that if blended learning becomes a key feature of school life next year, a weekly plan with linked content and videos could be really useful.

As always, we've listened! We've now produced a complete lesson-by-lesson overview for Y1 to Y9 that schools can use or adapt as they choose. Each lesson will be linked to a free-to-use home learning video, and for premium subscribers, a worksheet. This means that you can easily assign work to your class, whether they are working at home or in school.

Inevitably, this lesson-by-lesson structure won't suit everyone, but if it works for you, then please do make use of this resource as much as you wish.

White Rose Maths

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of opportunities to build reasoning and problem solving elements into the curriculum.

For more guidance on teaching for mastery, visit the NCETM website:

https://www.ncetm.org.uk/resources/47230

Concrete - Pictorial - Abstract

We believe that all children, when introduced to a new concept, should have the opportunity to build competency by taking this approach.

Concrete – children should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial – alongside this children should use pictorial representations. These representations can then be used to help reason and solve problems.

Abstract – both concrete and pictorial representations should support children's understanding of abstract methods.

Need some CPD to develop this approach? Visit <u>www.whiterosemaths.com</u> for find a course right for you.

Supporting resources

NEW for 2019-20!

We have produced supporting resources for every small step from Year 1 to Year 8.

The worksheets are provided in three different formats:

- Write on worksheet ideal for children to use the ready made models, images and stem sentences.
- Display version great for schools who want to cut down on photocopying.
- PowerPoint version one question per slide. Perfect for whole class teaching or mixing questions to make your own bespoke lesson.

For more information visit our online training and resources centre <u>resources.whiterosemaths.com</u> or email us directly at <u>support@whiterosemaths.com</u>

White Rose Maths

4

Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who's your favourite?

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Number: Place Value Nu			Number: Addition and Subtraction			tion	Measur Mo	rement: ney	Number: <u>Multiplication</u> and Division	Consolidation	
Spring	Number: Multiplication and Division		olication and		Geon Proper Sha	netry: ties of ape		Number:	Fractions	5		
Summer	Measur Lengt Hei	rement: h and ght	Geon Positio Direo	netry: on and ction	Consol and pr solv	lidation oblem ving	Measur Tir	ement: ne	Meası Ca Te	urement: apacity a emperatu	Mass, nd re	Consolidation

Year 2 | Spring Term | Week 1 to 4 - Number: Multiplication & Division

Overview Small Steps Recognise equal groups Make equal groups Add equal groups Multiplication sentences using the \times symbol Multiplication sentences from pictures Use arrays R Make doubles 2 times-table 5 times-table 10 times-table R Make equal groups - sharing Make equal groups - sharing R Make equal groups - grouping Make equal groups - grouping Divide by 2 Odd & even numbers Divide by 5

Divide by 10

Notes for 2020/21

Some of this content was previously in the Year 2 Autumn term. It has been moved over to Spring to allow more time on place value and addition and subtraction.

Prior to this block children had the opportunity to recap making equal groups, adding equal groups and making arrays from Year 1. Children can now build on this in the Spring term.

Concrete manipulatives are vital to introduce this topic and support children's conceptual understanding of the concept.

Recognise Equal Groups

Notes and Guidance

Children describe equal groups using stem sentences to support them. It is important that children know which groups are equal and unequal, and why they are equal or unequal. The addition and multiplication symbols are not used within this small step but use of the language of addition and multiplication will support them in understanding repeated addition and multiplication. The examples included refer to the times tables facts that Year 2 children need to know.

Mathematical Talk

What does the 2 represent? What does the 3 represent?

What does the 5 represent? What does the 2 represent?

I have <u>equal groups</u>, with <u>in each group</u>. Which image am I describing?

Why are these groups equal/unequal?

Varied Fluency

There are _____ equal groups with _____ in each group.

There are _____ baguettes altogether.

Describe the equal groups.

What is the same and what is different in each group?

Recognise Equal Groups

Reasoning and Problem Solving

Which group of money is the odd one out?

Explain why.

The bags with 5 p in each because the 2 ps and 1 ps have 4 p in each group.

Sort into equal and u	nequal groups.	Hearts and dots in
Equal Groups	Unequal Groups	unequal groups.
		Stars and squares in equal groups.
Create your own pictor column.	Jre to go in each	
Spot the mistake.	10 equal groups There are ten 2s."	There are 2 equal groups with 10 in each group There are two 10s.

Make Equal Groups

Notes and Guidance

Children should be able to make equal groups to demonstrate their understanding of the word 'equal'.

With the examples provided to the children, it is important that they are exposed to numerals and words, as well as multiple representations.

Mathematical Talk

How else could you represent these in equal groups?

How many ways can you represent this?

How have you grouped your items?

Varied Fluency

The Base 10 shows six equal groups with ten in each group. There are six tens.

How else can you represent these as equal groups?

How many ways can you represent 'four equal groups with three in each group'?

How else can we show five equal groups with 3 in each group? Compare your answer with a partner.

Make Equal Groups

Reasoning and Problem Solving

Add Equal Groups

Notes and Guidance

Children begin to connect equal groups to repeated addition.

At this point children have added 3 one digit numbers together, therefore they can add up to 3 equal groups when each group is any one digit number.

If there are more than 3 equal groups, the examples must be limited to 2s, 5s, 10s and 3s.

Mathematical Talk

- What do the two 3s represent?
- Why are we using the addition symbol?
- How else can we show the equal groups?

What is the total?

Varied Fluency

Complete:

There are _____ equal groups with _____ in each group. There are _____ 3s. + = 6

Complete:

There are _____ equal groups with _____ in each group. There are three _____s. ____ + ____ + ____ = 12

Complete the table.

Add Equal Groups

Reasoning and Problem Solving

True or False?

5+5=2+2+2+2+2

Draw an image or use cubes to help you explain your answer.

This is true because they are both equal to 10 but the groups look different.

To the left of the 'equal to' sign are 2 equal groups of 5, and to the right of the 'equal to' sign are 5 equal groups of 2.

The three 5s do not belong. We would have to take away one five.

The Multiplication Symbol

Notes and Guidance

- Children are introduced to the multiplication symbol for the first time. They should link repeated addition and
- multiplication together, using stem sentences to support their understanding.
- They should also be able to interpret mathematical stories and create their own involving multiplication.
- The use of concrete resources and pictorial representations is still vital for understanding.

Mathematical Talk

What does the 3 represent? What does the 6 represent?

What does 'lots of' mean?

Does $18 = 3 \times 6$ mean the same?

How is 6 + 6 + 6 the same as 3×6 ? How is it different?

Varied Fluency

Complete the sentences to describe the equal groups.

There are ____ equal groups with ____ in each group. There are three ____.

Complete:

Three 2s	Draw It	Addition	Multiplication
There are 3 equal groups with 2 in each group.			

Complete:

Addition	Multiplication	Story
10 + 10 + 10		
	6 × 5	

The Multiplication Symbol

Reasoning and Problem Solving

3+3+3=3×3	He is correct because 3 + 3 + 3 = 9 and $3 \times 3 = 9$	Think of a multiplication to complete: $6 + 6 + 6 > \ × \$	Any two numbers which multiply together to give an answer of less than 18
Is Mo correct? Explain why. Draw an image to help you.		The total is 12, what could the addition and multiplication be?	$6 + 6 = 2 \times 6$ 2 + 2 + 2 + 2 + 2 + 2
Use <, > or = to make the statements correct.	3 × 5 < 5 + 5 + 5 + 5		$= 6 \times 2$ 3 + 3 + 3 + 3 = 4 × 3 4 + 4 + 4 = 3 × 4
3×5 $5 + 5 + 5 + 5$ 2×2 $2 + 2$ 10×2 $5 + 5 + 5$	$2 \times 2 = 2 + 2$ 10 × 2 > 5 + 5 + 5		$12 = 1 \times 12$ $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$

Multiplication from Pictures Varied Fluency **Notes and Guidance** Complete: Children will use the multiplication symbol and work out the total from pictures. \times = They should also be able to interpret a multiplication word lots of 3 =problem by drawing images to help them solve it. multiplied by $__$ = 12 Coins could be used within this small step too. Complete: Mathematical Talk $\mathcal{O}\mathcal{O}\mathcal{O}$, O, O, O 4 lots of 3 1 × ____ What does the 4 represent? Complete the table. What does the 3 represent? Picture **Multiplication** Sentence What does the 12 represent? (呉) (呉) $4 \times 10 = 40$ 4 lots of 10 is equal to 40 (25) (4) $35 = 7 \times 5$ Can you think of your own story for $3 \times 4 = 12$? 6 lots of 3 is equal to 18

Multiplication from Pictures

Reasoning and Problem Solving

There are four baskets.	The image could	•	There are 2
	he d eirelee with Z	•• <u> </u>	
There are three dells in each backet	be 4 circles with 5		groups with 5
There are three oolis in each basket.	dots in each.		people in each
How many dolls are there altogether?	The calculation:		group.
How many bous are there allogether?	The calcolation.		
	$4 \times 3 = 12$		There are 5
			people in one
Draw an image and write a calculation to			group and 5 in the
represent the problem.		2 × 5	othor
		2 × 5	other.
Write a stary for the coloulation 4 × 10	Stories with 1	5+5	There are 5 lots of
while a story for the calculation 4 × 10		5 × 2	
	groups and 10 in		2 people.
Draw an image to illustrate your story.	each group, for		
	example:	Each calculation could explain the image.	
	Four tables with		
		Explain why.	
	ten children on		
	each table.		
	Four purses with		
	10m in each nurse		
	iop in each purse.		

Use Arrays

Notes and Guidance

Children explore arrays to see the commutativity of multiplication facts e.g. $5 \times 2 = 2 \times 5$

The use of the array could be used to help children calculate multiplication statements.

The multiplication symbol and language of 'lots of' should be used interchangeably.

Mathematical Talk

Where are the 2 lots of 3?

Where are the 3 lots of 2?

What do you notice?

What can we use to represent the eggs?

Can you draw an image?

Varied Fluency

On the image, find 2×5 and 5×2

Can you represent this array using another object?

Complete the number sentences to describe the arrays.

and X X

 $4 \times 5 = 5 \times 4$ $3 \log 10 = 10 \log 3$

Use Arrays

Reasoning and Problem Solving

With 12 cubes, how many different arrays can you create?		Find different ways to solve six lots of three.	Count in 3s 3 lots of 3 add 3 lots of 3 5 x 3 add 1 x 3
Once you have created your array complete: x=x	$1 \times 12 = 12 \times 1$ $2 \times 6 = 6 \times 2$ $3 \times 4 = 4 \times 3$		etc.
	$3 \times 4 = 4 \times 3$	Part of this array is hidden.	4 × 2 5 × 2 6 × 2 7 × 2

Making Doubles

Notes and Guidance

Children explore doubling with numbers up to 20 Reinforce understanding that 'double' is two groups of a number or an amount. Children show and explain what doubling means using concrete and pictorial representations.

They record doubling using the sentence, 'Double ____ is ____' and use repeated addition to represent doubles in the abstract. They look at representations to decide whether that shows doubling or not.

Mathematical Talk

Can you sort these representations in to doubles and not doubles? How do you know they've been doubled?

What comes next in my table, why?

How can we show the double differently?

If double 2 is 4, what is double 20? What is the largest double we can roll on a normal dice?

Varied Fluency

Circle the representations which have been doubled:

Take a number piece and double it. Complete the sentence.

- Double ____ is ____
- Double ____ is ____
- Complete and continue the table.

Build	Represent	Add	Double
		1 + 1 = 2	Double 1 is 2
	• •	2 + 2 =	Double 2 is
		3 + 3 =	Double 3 is
		+=	Double 4 is

Year 1 Summer Term Week 1 to 3 – Number: Multiplication and Division

Making Doubles

Reasoning and Problem Solving

Louise doubles her donuts. The picture shows what she had after she doubled her donuts. Whitney Louise started with 4 and ended with 8 donuts. Eva Louise started with 8 and Õ ended with 16 donuts. Mo Louise started with 2 and ended with 4 donuts. 0 0 Who do you agree with? Explain why.

Possible answer: Whitney is correct because the image shows what she was left with. She had 8 after she doubled and double 4 is 8

Complete the table by doubling each number.

What patterns do you notice?

Possible answer:

1	2
2	4
3	6
4	8
5	10
6	12
7	14
8	16
9	18
10	20

The doubles increase by 2 each time. The doubles are all even. The doubles end in 2,4,6,8 or 0

The 2 Times-Table

Notes and Guidance

Children should be comfortable with the concept of multiplication so they can apply this to multiplication tables.

Images, as well as number tracks, should be used to encourage children to count in twos.

Resources such as cubes and number pieces are important for children to explore equal groups within the 2 times-table.

Mathematical Talk

If 16 p is made using 2 p coins, how many coins would there be?

How many 2s go into 16?

How can the images of the 5 bicycles help you to solve the problems?

Varied Fluency

Count in 2s to calculate how many eyes there are.


```
There are _____ eyes in total.
```


Complete the number track.

How many wheels are there on five bicycles?

If there are 14 wheels, how many bicycles are there?

The 2 Times-Table

Reasoning and Problem Solving

Fill in the blanks. 3 × = 6 × 2 = 20 = 8 × 2	2 10 16	Eva says, Every number in the 2 times-table is even.	Yes, because 2 is even, and the 2 times-table is going up in 2s. When you add two even numbers the answer is always
Tommy says that 10 × 2 = 22 Is he correct? Explain how you know.	No Tommy is wrong because 10 $\times 2 = 20$ Children could draw an array or a picture to explain their answer.	Is she correct? Explain your answer.	even.

The 5 Times-Table

Notes and Guidance

Children can already count in 5s from any given number. They will also have developed understanding of the 2 timestable.

This small step is focused on the 5 times table and it is important to include the use of zero. Children should see the = sign at both ends of the calculation to understand that it means 'equals to'.

Mathematical Talk

If there are 30 petals, how many flowers? Can you count in 5s to 30? How many 5s go into 30?

How many 5s go into 35?

What does each symbol mean?

Varied Fluency

How many petals altogether?

Write the calculation.

There are 35 fingers. How many hands?

____ × 5 = 35

Use <, > or = to make the statements correct.

 $2 \times 5 \qquad 5 \times 2$ $3 \times 2 \qquad 4 \times 5$ $10 \times 5 \qquad 5 \times 5$

The 5 Times-Table

Reasoning and Problem Solving

Is Mo correct? Every number in the 5 times table is odd.	Mo is incorrect because some of the multiples of the five times- table are even, e.g. 10, 20, 30	Tommy and Rosie have both drawn bar models to show 7 \times 5 5555555	The total shown is the same. Tommy's bar shows seven lots of 5 whereas Rosie's bar show
Explain your answer.			five lots of 7
Tubes of tennis balls come in packs of 2 and 5	Whitney could have:	What's the same and what is different about their bar models?	choose either way to represent 4×5
Whitney has 22 tubes of balls.	4 packs of 5 and 1 pack of 2,	Draw your own bar model to represent 4×5	
How many of each pack could she have?	11 packs of 2 and O packs of 5, 2 packs of 5 and 6		
How many ways can you do it?	packs of 2		

©White Rose Maths

The 10 Times-Table

Notes and Guidance

Children have counted in 10s from any given whole number. This small step is focused on the 10 times-table and it is important to include the use of zero.

Children should see the = sign at both ends of the calculation to understand what it means.

Mathematical Talk

- What if there were 10 packs of crayons?
- If there are 50 crayons altogether, how many packets are there? How do you know?
- How many tens go into 30? Can you count in 10s to 30?
- What does greater than mean? What does less than mean?

Varied Fluency

How many crayons are there altogether?

Altogether there are 30 bottles, how many walls are there?

Think of a multiplication fact for 10s to go in each box.

The 10 Times-Table

Reasoning and Problem Solving

On sports day, Jack runs 10 metres, 7 times.	10 + 7 is incorrect because he has run 10 metres, 7 times, not 10 metres then 7	Some Base 10 is hidden. The total is less than 100 What could the calculation be?	It could be 6 × 10 = 60 7 × 10 = 70 8 × 10 = 80 9 × 10 = 90
Which of these calculations do not describe this word problem? 10 + 7 7 × 10	metres. 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 is incorrect because he does not run 7 metres		
7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 +	each time but 10 metres.	× 10 =	It can't be 10 × 10
Explain why.		Tim says it could be 10 × 10 Is he correct? Explain your answer.	because 100 is not less than 100, it is equal to 100.

Sharing Equally

Notes and Guidance

Children explore sharing as a model of division. They use 1:1 correspondence to share concrete objects into equal groups.

Children also need to be given the opportunity to see when a number of objects cannot be shared equally into equal groups.

Mathematical Talk

How can I share the muffins equally?

How many muffins on this plate? How many on this plate? Are they equal? If I had 9 muffins what would happen?

How can I share the objects equally? How many equal groups am I sharing the objects into? Are the groups equal? Are there any left over?

Varied Fluency

___ cakes shared equally between 2 is ____

Collect 20 cubes. Use hoops to represent your friends.
 Can you share the cubes between 5 friends?
 20 shared between 5 equals _____
 Can you share the cubes between 2 friends?
 20 shared between 2 equals _____
 Can you share the cubes between 10 friends?
 20 shared between 10 equals _____

Tim has 16 bananas. He shares them equally between two boxes. How many bananas are in each box? Represent and solve the problem.

Sharing Equally

Reasoning and Problem Solving

Dora has 10 biscuits.

She wants to share them equally at her party.

How many people could be at the party?

Possible answers:

There could be: 10 people 5 people 2 people 1 person (Dora)

each box. (0)0 of 2 Jack Share them into 2 00 groups. Eva

There are 10 cakes and 2 boxes.

An equal amount needs to be put into

Eva is correct. She has shared the cakes equally and put 5 into each box.

Make Equal Groups - Sharing

Notes and Guidance

Children divide by sharing objects into equal groups using one-to-one correspondence. They need to do this using concrete manipulatives in different contexts, then move on to pictorial representations.

Children will be introduced to the ' \div ' symbol. They will begin to see the link between division and multiplication.

Mathematical Talk

How many do you have to begin with? How many equal groups are you sharing between? How many are in each group? How do you know that you have shared the objects equally?

____ has been shared equally into ____ equal groups.
I have ____ in each group.
___ groups of ____ make ____

Varied Fluency

Share the 12 cubes equally into the two boxes.

There are	cubes altogether.
There are	boxes.
There are	cubes in each box.

Can you share the 12 cubes equally into 3 boxes?

24 children are put into 4 equal teams. How many children are in each team?

Can you use manipulatives to represent the children to show how you found your answer?

Ron draws this bar model to divide 20 into 4 equal groups.
How does his model represent this?
He writes 20 ÷ 4 = 5

What other number sentences could Ron create using his model?

Make Equal Groups - Sharing

Reasoning and Problem Solving

Jack says,

I can work out $40 \div 2$ easily because I know that 40 is the same as 4

tens.

This is what he does:

Is it possible to work out $60 \div 3$ in the same way? Prove it.

Is it possible to work out $60 \div 4?$ What is different about this calculation?

Possible answer :

For $60 \div 4$ the children will need to exchange 2 tens for 20 ones so they can put one 10 and 5 ones into each group.

Alex has 20 sweets and shares them between 5 friends.

Tommy has 20 sweets and shares them between 10 friends.

Whose friends will receive the most sweets?

How do you know?

Alex's friends get more because Tommy is sharing with more people so they will get fewer sweets each. Alex's friends will get 4 sweets each whereas Tommy's friends will only get 2 sweets each.

Notes and Guidance

Children start with a given total and make groups of an equal amount. They record their understanding in sentences, not through formal division at this stage.

Children can develop their understanding of equal groups by also being exposed to numbers which do not group equally.

Mathematical Talk

How can you tell if the groups are equal? How can you represent the equal groups? Do all numbers divide into equal groups of 2?

How do you sort the cubes into equal groups?

- What would happen if there were 21 cubes?
- Have I got equal groups?
- How do you know?
- Does each group need to be arranged in the same way for it to be equal?

Varied Fluency

There are _____ groups of 2 mittens. If you had 10 mittens, how many equal groups of 2 mittens could you make?

- Take 20 cubes. Complete the sentences. I can make ____ equal groups of 2
 - I can make _____ equal groups of 5
 - I can make _____ equal groups of 10

Complete the table. Use equipment to help you.

Reasoning and Problem Solving

Tommy and Jack each have the same number of sweets.

Tommy has 5 equal groups of 2 Jack has 1 equal group. How many sweets are in Jack's group? Jack has 10 sweets in his group. I am thinking of a number between 20 and 30

I can only make equal groups of 5

What must my number be?

What happens when I try to make groups of 2 with it?

What happens when I try to make groups of 10 with it?

Answer: 25 Children can use practical equipment to solve this and discover what happens. If you make equal groups of 2 with it there will be 1 left

over.

If you make equal groups of 10 with it there will be 5 left over.

Notes and Guidance

Children divide by making equal groups. They then count on to find the total number of groups.

They need to do this using concrete manipulatives and pictorially in a variety of contexts.

They need to recognise the link between division, multiplication and repeated addition.

Mathematical Talk

How many do you have to begin with? How many are in each group? How many groups can you make?

How long should your number line be? What will you count up in?

____ groups of _____ make _____

Varied Fluency

Pencils come in packs of 20 We need to put 5 in each pot. How many pots will we need?

There are ____ pencils altogether. There are ____ pencils in each pot. There are ____ pots.

⁷ Mrs Green has 18 sweets. She puts 3 sweets in each bag. How many bags can she fill?

18

 $18 \div 3 = \bigcirc$

Mo uses a number line to work out how many equal groups of 2 he can make from 12

Use a number line to work out how many equal groups of 5 you can make from 30

Reasoning and Problem Solving

You have 30 counters.

How many different ways can you put them into equal groups?

Write down all the possible ways.

10 groups of 3 3 groups of 10 6 groups of 5 5 groups of 6 2 groups of 15 15 groups of 2 1 group of 30 30 groups of 1 Amir has some counters. He makes 5 equal groups.

The amount he started with is greater than 10 but less than 35

How many counters could he have started with?

How many will be in each group?

He could have 30 counters in 5 groups of 6

25 counters in 5 groups of 5

20 counters in 5 groups of 4

15 counters in 5 groups of 3

Notes and Guidance

Children should be secure with grouping and sharing. They will use this knowledge to help them divide by 2

They will be secure with representing division as an abstract number sentence using the division and equals symbol.

Children should be able to count in 2s and know their 2 times table.

Mathematical Talk

What do you notice when you group these objects into twos?

Is there a link between dividing by 2 and halving?

What is different about sharing into two groups and grouping in twos?

Can we write a multiplication sentence as well as a division sentence? What do you notice?

Varied Fluency

Complete the stem sentences.

I have ___ cubes altogether. There are ___ in each group. There are ___ groups.

Group the socks into pairs.

Complete the number sentences.

- Mo and Tommy have 12 sweets between them. They share them equally. How many sweets does each child get?
 - There are ____ sweets altogether. There are ____ groups. There are ____ in each group.

Complete the bar model and write a calculation to match.

Reasoning and Problem Solving

I have 24p. I divide it equally between 2 friends. How much will they get each?

I have 24p in 2p coins. How many 2p coins do I have?

Consider the two questions above. What is the same and what is different?

Tommy and Annie have some counters.

Tommy shares his counters into 2 equal groups. He has 15 in each group.

Annie groups her counters in twos. She has 19 groups.

Who has more counters and by how many? How did you work it out?

The calculation is the same in both In the first question we are sharing, whereas in the second question we are grouping. Tommy has 30 counters. Annie has 38 counters. Annie has 8 more. Children could have compared 15 and 19 and realised they could have done 2×4

Ron has shared some grapes equally between two friends.

Ron's friends

Each friend receives fewer than 50 grapes.

Complete the sentences to describe the number of grapes Ron started with.

He must have started with...

He could have started with...

He can't have started with...

Possible answer:

He must have started with an even number of grapes.

He could have started with 40 grapes.

He can't have started with 100 grapes.

Odd & Even Numbers

Notes and Guidance

Building on from Year 1, children should be able to recognise odd and even numbers.

They will use concrete manipulatives to explore odd and even numbers and the structure of these.

Varied Fluency

Use counters to make each number and share them into two equal groups. How does this help you decide whether a number is odd or even? Show this in the table.

Can you see any patterns?

Which number pieces are odd? Explain why. Find or draw other odd and even pieces. What do you notice?

Spot the mistakes:

odd		even	
nine	Sop 1	🔛 10	
6	3 000	eight 111 25 25	

Can you make your own odd and even sets?

Mathematical Talk

Can you sort these objects (number pieces, ten frames, cubes, pictures etc) into an odd set and an even set?

What makes these odd/even?

How do you find out if ____ is an odd or even number?

Can you find all the odd and even numbers on a 100 square? What do you notice?

Odd & Even Numbers

Reasoning and Problem Solving

True or	false?
---------	--------

12 is an odd number.

Prove your answer using concrete, pictorial and abstract representations. Explain each approach.

Tommy says that when he adds two odd numbers together, his total will be even.

ls he correct? Convince me.

What else can you find out?

Children can use concrete or pictorial methods to show 12 is divisible by 2 and therefore it's false.

Tommy is correct because two odd numbers will always make an even total. Children can use any manipulatives to show this.

Whitney says,

I have added two one-digit numbers. My answer divides into 2 equal groups.

What could Whitney's numbers be? Is this the only possible answer? Which numbers would not be possible? Explain your answers. Any two even one digit numbers or any two odd one digit numbers will give an even total. E.g. 1 + 3 = 42 + 4 = 6

However, an odd number added to an even number will give an odd total so Whitney could not have this combination.

Notes and Guidance

During this step, children focus on efficient strategies and whether they should use grouping or sharing depending on the context of the question.

They use their knowledge of the five times table to help them divide by $\mathbf{5}$

They will continue to see the = sign both before and after the calculation.

Mathematical Talk

How can we represent the problem using objects/images?

How does knowing your 5 times table help when dividing by 5?

Circle all the multiples of 5 on a 100 square. What do you notice about the numbers? Can you explain the pattern? How does this help you to divide these numbers?

When would we count in 5s?

Varied Fluency

🕇 Take 30 cubes.

How many towers of 5 can you make? You can make ____ towers of 5 ____ towers of 5 is the same as 30 30 is the same as ___ towers of 5

🕇 40 pencils are shared between 5 children.

How many pencils does each child get?

- Group the 1p coins into 5s.
 How many 5p coins do we
 need to make the same amount of money?
 Draw coins and complete the missing information.
 - ____ lots of 5p = 20 one pence coins
 - ____ lots of 5p = 20p
 - 20p = ___ × 5p
 - 20p ÷ 5 = ____

41

Reasoning and Problem Solving

A party bag contains 5 sweets. A jar contains 5 party bags.

Ron has 75 sweets.

How many party bags will he need?

How many jars will he need?

15 party bags. 3 jars.

Use the number cards to make

multiplication and division sentences.

 $4 \times 5 = 20$ $5 \times 4 = 20$ $20 \div 4 = 5$ $20 \div 5 = 4$ $5 \times 2 = 10$ $2 \times 5 = 10$ $10 \div 2 = 5$ $10 \div 5 = 2$ $20 \div 2 = 10$ $20 \div 10 = 2$ $2 \times 10 = 20$ $10 \times 2 = 20$

Notes and Guidance

Children should already be able to multiply by 10 and recognise multiples of 10. They will need to use both grouping and sharing to divide by 10 depending on the context of the problem.

Children start to see that grouping and counting in 10s is more efficient than sharing into 10 equal groups.

Mathematical Talk

What can we use to represent the problem?

How does knowing your 10 times table help you to divide by 10?

Circle all the multiples of 10 on a hundred square. What do you notice? Can you explain the pattern?

How many groups of 10 are there in ____?

Varied Fluency

Apples can be sold in packs of 10 How many packs can be made below?

When 30 apples are sold in packs of 10, ____ packs of apples can be made.

Can you show this in a bar model?

Label and explain what each part represents.

- I have 70p in my pocket made up of 10p coins. How many coins do I have? Draw a picture to prove your answer.
- Fill in the missing numbers.
 - 70 ÷ 10 = ___
 - 6 tens \div 1 ten =
 - $5 = \div 10$
 - There are <u>tens</u> in 40

Reasoning and Problem Solving

Mrs Owen has some sweets.

She shares them equally between 10 tables.

How many sweets could each table have?

Find as many ways as you can.

What do you notice about your answers?

True or false?

Dividing by 10 is the same as dividing by 5 then dividing by 2

They could have: $10 \div 10 = 1$ $20 \div 10 = 2$ $30 \div 10 = 3$ $40 \div 10 = 4$ $50 \div 10 = 5$ etc

The tens digit is the same as the answer.

True

Cakes are sold in boxes of 10 Jack and Alex are trying to pack these cakes into boxes. Jack says, There are 5 groups of 10

Alex says,

Who is correct? Explain how you know.

Alex is correct because there are 60 cakes and 60 divided by 10 is 6

Jack has incorrectly grouped the cakes, he might have counted the rows wrong. He hasn't put them in 10s. He incorrectly assumed there were 10 in each row.

Year 2 | Spring Term | Week 5 to 6 - Statistics

Overview

Small Steps

Make tally charts
Draw pictograms (1-1)
Interpret pictograms (1-1)
Draw pictograms (2, 5 and 10)
Interpret pictograms (2, 5 and 10)
Block diagrams

Notes for 2020/21

This block leads on really nicely from multiplication and division.

Have fun with the children, gaining information about each other and creating pictograms and block diagrams practically.

Make Tally Charts

Notes and Guidance

Children are introduced to tally charts as a systematic method of recording data.

They should already be able to count in 5s and understand the vocabulary of total, altogether, more, less and difference.

Varied Fluency

Complete the tally chart.

Favourite Colour	Tally	Total
Blue		
Red		
Yellow		
Green		

What does the data tell you? Tell me the story.

Complete the tally chart for Year 2 and Year 3

Year Group	Tally	Total
Year 1	JHT JHT	10
Year 2		19
Year 3		
Year 4	JHT JHT JHT	17

Make a tally chart about one of the following topics:

- Equipment in class (scissors, glue etc.)
- Favourite sport
- Favourite fruit
- Ways of getting to school (walk, car, cycle etc.)
- A choice of your own

Mathematical Talk

What do you notice about the groups? How would we count these?

How would you show 6, 11, 18 as a tally?

Why do we draw tallys like this?

When do we use tallys?

Make Tally Charts

Reasoning and Problem Solving

Dexter makes a tally chart of the animals he saw at the zoo

Tick one box below that shows all of the animals Dexter saw and explain why the others are incorrect.

Box 1 is incorrect because there are not enough elephants to match the tally chart. Box 2 is incorrect because there are not enough pandas to match the tally chart. Box 3 is incorrect because there are too many turtles.

Class 1 and Class 2 were each asked their favourite ice-cream flavours. Their results are shown in the tally charts.

Class 1			
Flavour	Total		
Vanilla			
Chocolate			
Strawberry			
Mint			

Class 2				
Flavour	Total			
Vanilla	₩ ₩			
Chocolate	HH HH HH			
Strawberry	₩			
Mint				

What is the same? What is different?

The same: Both classes have 20 votes for chocolate. Both tally charts show that chocolate is the favourite flavour and mint is the least favourite flavour. The order of preference for all four flavours is the same. Different: In Class 1, three more children like Vanilla. There are more children in Class 1 than Class 2.2 more children chose mint in class 2

Draw Pictograms (1-1)

Notes and Guidance

Children use tally charts to produce pictograms. They build pictograms using concrete apparatus such as counters or cubes then move to drawing their own pictures.

They need to be able to complete missing column or rows. They should use the same picture to represent all the data in the pictogram and line this up carefully.

It is important that children see pictograms both horizontally and vertically.

Mathematical Talk

How do you know how many images to draw?

What is the same and what is different about these two pictograms? (same data but shown horizontally and vertically) Which pictogram is easier to read? Why?

What simple symbol could we draw to represent the data? Why did you choose this?

Varied Fluency

Complete the pictogram.

Hair Colour		Total
Black	00000	5
Blonde	0000000	
Brown		9
Ginger	0000	4

Key $= 1 \, \text{person}$

Use the tally chart to help you complete the pictogram.

Fruit	Tally	Fruit	
Banana	₩T	Banana	
Grape		Grape	
Pear	₩ III	Pear	
Apple		Apple	$\bigcirc \bigcirc \bigcirc \bigcirc$

Complete the pictogram using the data given.

Draw Pictograms (1-1)

Reasoning and Problem Solving

Here is a pictogram showing the number of counters each child has.

How could you improve the pictogram?

Possible answer Children show understanding that the pictogram is hard to read as the symbols are overlapping each other. The pictures must be lined up and evenly spaced. There are also different sized circles representing the data. The pictures need to be the same size. There isn't a key.

Use the clues below to help you complete the pictogram.

- More Caramel was sold than Bubblegum flavour, but less than Strawberry flavour.
- Mint was the most popular flavour.
- Vanilla was the least popular.

Flavour	ice cream	Total
Strawberry	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Vanilla		
Chocolate		
Mint		
Caramel		
Bubblegum	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	4

Can you find more than one way to complete the pictogram?

Various answers, e.g. Strawberry – 8 Vanilla – 1 Chocolate – 4 Mint – 9 Caramel – 6

Bubblegum – 4

50

Interpret Pictograms (1-1)

Notes and Guidance

Children use their knowledge of one-to-one correspondence to help them interpret and answer questions about the data presented in pictograms.

It is important that children are able to compare data within the pictograms.

Mathematical Talk

What is the pictogram showing us?

What can you find out from this pictogram?

Can you think of your own questions to ask a partner?

Varied Fluency

Here is a pictogram to show Class 5s favourite t-shirts.

What is the most popular colour t-shirt? What colour is the least popular t-shirt? How many more children chose blue t-shirts than red? How many children are in Class 5?

 Minibeast
 Key

 Woodhouse
 Image: Constraints

 Ladybird
 Image: Constraints

 Centipede
 Image: Constraints

 Worm
 Image: Constraints

 Spider
 Image: Constraints

) = 1 minibeast

There are ____ ladybirds.

There are _____ centipedes and worms altogether.

There are _____ more worms than centipedes.

What else does the pictogram tell us?

Interpret Pictograms (1-1)

Reasoning and Problem Solving

Teddy writes these statements about his pictogram:

- There were more cows than sheep.
- There were the same number of sheep and horses.
- There were more chickens than any other animal.
- There were less cows than goats.
- There were 8 goats.

Can you draw a pictogram so that Teddy's statements are correct? What title would you give it?

Children may have different numbers from this and still be correct.

Draw Pictograms (2, 5 & 10)

Notes and Guidance

Children draw pictograms where the symbols represent 2, 5 or 10 items.

The children will need to interpret part of a symbol, for example, half of a symbol representing 10 will represent 5

Children count in twos, fives, and tens to complete and draw their own pictograms.

Mathematical Talk

If a symbol represents 2, how can you show 1 on a pictogram? How can you show 5? How can you show any odd number?

When would you use a picture to represent 10 objects?

Discuss with children that when using larger numbers, 1-1 correspondence becomes inefficient.

Varied Fluency

👕 Use the tally chart to complete the pictogram.

Tally	Pet	
1111 III1	Dog	
### ### IIII	Cat	
JHT JHT II	Rabbit	
JHT JHT JHT I	Fish	

Use the information to complete the pictogram about the number of books read in each class.

Class 1	***
Class 2	$\mathbb{X} \mathbb{X} \mathbb{X} \mathbb{Y} \mathbb{X} \mathbb{Y} \mathbb{Y} \mathbb{Y} \mathbb{Y} \mathbb{Y} \mathbb{Y} \mathbb{Y} Y$
Class 3	HT HT HT
Class 4	$\mathbb{H}\mathbb{H}\mathbb{H}\mathbb{H}\mathbb{H}\mathbb{H}\mathbb{H}$
Class 5	######
Class 6	HH H

Year 2 sell cakes at a bake sale. The tally chart shows the data. Draw a pictogram to represent the data.

Chocolate	
Lemon	
Red Velvet	
Mint	
Carrot	

Draw Pictograms (2, 5 & 10)

Reasoning and Problem Solving

Create a pictogram to show who was born in what season in your class.

Use what you know about pictograms to help you.

Here is an example.

	\diamond		
Spring	Summer	Autumn	Winter

<u>Key</u>

= 2 children

Teddy and Eva both draw a pictogram to show how many cars they counted driving past their school.

What is the same? What is different? Whose pictogram do you prefer? Why? Possible answer. Same – both pictograms show the same information. Both easy to read. Both used circle. Both are in the same order.

Different – Eva counts in 10s, Teddy counts in 5s Teddy's is vertical and Eva's is horizontal.

Interpret Pictograms (2, 5 & 10)

Notes and Guidance

To help children to fully understand pictograms, it is important they have collected their own data previously in tally charts and constructed larger scale pictograms practically. Children also need to be able to halve 2 and 10

It is important the children are exposed to both horizontal and vertical pictograms.

Mathematical Talk

How can we represent 0 on a pictogram?

What does the pictogram show? What doesn't it show?

What is each symbol worth?

Varied Fluency

How many more sparrows are there than robins?

What is the total number of birds? How did you calculate this? Can you think of your own questions to ask a friend?

Which is the most popular sport?

How many children voted for football and swimming altogether? What could the title of this pictogram be?

55

Animal **** Pigs **** Sheep $\stackrel{\frown}{\simeq}$ Horses *** Chickens Cows = 10 animals

Use the pictogram to decide if the statements are true or false.

Statement	True or False?
Horses were the least popular animal.	
The number of chickens seen was half the number of cows seen.	
The total amount of pigs and sheep is 70	
There were 8 cows on the farm.	
There were 10 fewer chickens than sheep.	

Interpret Pictograms (2, 5 & 10)

Reasoning and Problem Solving

Jack and Whitney have carried out a traffic survey.

Is she correct? Explain your answer.

Jack is correct because there are 20 lorries and 30 bikes. That means there are 50 lorries and bikes altogether. This is the same as the number of cars. Whitney is incorrect because she has ignored the key.

That means there will be 165 cars, not 16 and a half.

Convince me

There are more ice-creams sold at the weekend than during the rest of the week.

True or False (Why?)

Three ice creams were sold on Tuesday.

Justify

If the staff needed to pick one day to have off during the week, which would be the best day and why? There were 36 ice creams sold at the weekend and only 28 sold during the rest of the week. There were not 3 ice creams sold on Tuesday, there were 6 sold. One symbol represents 2 ice creams. The best day off would be Monday because that is the day they sold the least amount.

Block Diagrams

Notes and Guidance

Moving from concrete to pictorial, children build block diagrams using cubes and then move to drawing and interpreting block diagrams.

Children use their knowledge of number lines to read the scale on the chart and work out what each block represents.

Children ask and answer questions using their addition, subtraction, multiplication and division skills.

Mathematical Talk

Can you draw a block diagram to represent the data? What will each block be worth?

Can you make a block diagram to show favourite colours in your class?

Can you create your own questions to ask about the block diagram?

Varied Fluency

Class 4 are collecting data about favourite colours.

Colour	Number of children
Red	5
Green	8
Blue	7
Yellow	2

Make a block diagram using cubes to represent the data. Now draw the block diagram. What will the title be? Remember to label the blocks and draw a clear scale.

⁷ 5 classes collected their house points. Here are their results.
Which class collected the most house points?
Which class collected the fewest house points?
How many more points did Class 2 get than Class 4?
How many fewer points did Class 3 get than Class 5?
How many points did Class 2 and Class 3 get altogether?

Block Diagrams

Reasoning and Problem Solving

Here are three tables of data. Which set of data could you display using the block graph? Which could use the pictogram? Which could use the tally chart?

Explain your reasoning.

Team	Goals scored
А	20
В	32

С 27 D 16

Data Set 2	
Player	Points
1	20
2	65
3	80
4	45

ts	Name	Score
	Ron	20
	Eva	12
	Amir	6
	Mo	16

Data Set 3

Pic	togram	= 10
		-
		 1
]
Tally	Chart	

Data Set 3 would best suit the block diagram because the numbers are all under 20

Data Set 2 would best suit the pictogram because the numbers are larger but all multiples of 5 or 10

Data Set 3 would best suit the tally chart because some numbers are larger than 20 but not all multiples of 5 or 10

Split into groups.

Everyone needs to write their name on a sticky note.

Use your sticky notes to create a block diagram to answer each question.

- How many boys and how many girls ٠ are there in your group?
- Which month has the most birthdays for your group?
- What is your favourite sport? ٠

What other information about your group could you show?

Possible examples:

Year 2 | Spring Term | Week 7 to 9 - Geometry: Properties of Shape

Overview Small Steps

Recognise 2-D and 3-D shapes
Count sides on 2-D shapes
Count vertices on 2-D shapes
Draw 2-D shapes
Lines of symmetry
Sort 2-D shapes
Make patterns with 2-D shapes
Count faces on 3-D shapes
Count edges on 3-D shapes
Count vertices on 3-D shapes
Sort 3-D shapes
Make patterns with 3-D shapes

Notes for 2020/21

Children have briefly covered 2-D and 3-D shapes in Year 1. Now there is an opportunity to delve deeper into this concept.

Ensure correct mathematical language is used throughout to help equip children for the future. From this point on 'vertices' should used to describe corners of shapes.

Try to make this block as practical as possible and use outdoor space to explore shapes in nature.

Recognise 2-D and 3-D Shapes

Notes and Guidance

Before learning about their properties, children need to recognise and name both 2-D and 3-D shapes and to be able to differentiate between them. They begin to understand that 2-D shapes are actually flat and the manipulatives they handle in class are representations of the shapes. Children also need to be able to recognise 2-D shapes in different orientations and proportions.

Mathematical Talk

- What is the difference between a 2-D and 3-D shapes?
- What shape is this? If I turn it around, what shape is it now?
- Can you draw around any of the faces on your 3-D shapes? Which 2-D shapes can you make?

Varied Fluency

- Match the names of the shapes to the pictures.

 Square
 Triangle
 Rectangle
 Circle

 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image

 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 Image
 I
- Put a combination of 3-D shapes in a feely bag. Can you find the cube, the cone, the cylinder? What do you notice about each shape?

How did you know that was the right shape?

What were you feeling for?

Go on a shape hunt around school. Create a tally of the shapes you see. Can you see any pentagons? Can you see any octagons? Can you see any hexagons? What was the most common shape?

Recognise 2-D and 3-D Shapes

Reasoning and Problem Solving

Count Sides on 2-D Shapes

Notes and Guidance

Children should be encouraged to develop strategies for accurate counting of sides, such as marking each side as it has been counted.

Children also need to understand that not all same-sided shapes look the same, such as irregular 2-D shapes.

Mathematical Talk

What is a side?

- How can you check that you have counted all the sides?
- Do all four-sided shapes look the same?
- Why do you think the shapes have the names that they do?

Varied Fluency

Count Sides on 2-D Shapes

Reasoning and Problem Solving

Here are 18 lollipop sticks. How many hexagons can you make?

How many octagons can you make?

What other shapes can you make with 18 lollipop sticks?

Mo makes a rectangle using the sticks.

How many identical rectangles could he make with 18 sticks? Make your own rectangle. How many sticks did you use? Is your rectangle the same as your friend's? Using one stick per side: 3 hexagons, 2 octagons with 2 lollipop sticks spare, 6 triangles, 4 squares or 3 pentagons. May also create shapes with more than one stick on each side.

Mo could make 3 rectangles using 6 sticks. Talk about how rectangles can look differently. If I put these shapes into order from the smallest number of sides to the largest, which shape would come third?

Where would a hexagon come in the list? Why? triangle, quadrilateral, pentagon, octagon

The pentagon would be third.

A hexagon would come after the pentagon and before the octagon because it has 6 sides which is more than 5 and less than 8.

Count Vertices on 2-D Shapes

Notes and Guidance

Children are introduced to the terms vertex and vertices. They understand that a vertex is where two lines meet at a point. They recognise that corners are vertices and will be able to identify and count them on shapes.

Ensure from this point forwards the word vertex is used in place of corner throughout all content.

Mathematical Talk

- Show me a vertex.
- Can you identify the vertices in this shape?
- Would this be a vertex? Explain why.
- If my shape has _____ vertices, what could my shape be? What couldn't it be?

Varied Fluency

Count Vertices on 2-D Shapes

Reasoning and Problem Solving

Amir says: My shape has half the number of vertices as an octagon. What shape could he have?	Square Rectangle	Jack has created a pattern using shapes. 1 2 3 How many vertices does each step in the pattern have?	Possible answer: 4, 7, 11 The next step could have another square (15 vertices) or
Put these shapes in order based upon	Triangle, rectangle,	What do you notice?Can you predict how many vertices the next step in the pattern will have?Is there more than one way to continue the pattern?Can you create your own pattern and explore how the vertices change?	another triangle
the number of vertices they have.	pentagon, hexagon		(14 vertices).

Draw 2-D Shapes

Notes and Guidance

Children use their knowledge of properties of shape to accurately create 2-D shapes. Children could use geoboards to make shapes with elastic bands and look carefully at the number of sides and vertices.

Using geo-boards is a practical step to take before children draw their own shapes on dotted or squared paper.

Mathematical Talk

Compare your shape with a friend's shape. Is it in the same position? Is it the same size?

Where are you going to start drawing the shape? In the middle of a side? At a vertex? Which is the most efficient way?

Why is it important to use a ruler?

Is your shape an exact copy? How do you know?

Varied Fluency

Use a geoboard to make different 2-D shapes. Can you make a rectangle? Can you make a square? Can you make a triangle?

-	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_
	•	5	5	•	22	35		5					5	:2			2
		•	•	•	•	٠	٠	•	•	•	T			•	•		٠
•											4					2	
÷		Ē.	111		1	1201	191	- Pi	-		8	\sim	•	•		-	
•		8	•	٠	0	18		8		•			•	•		-	•
*		3	1	•	15	15	(2)	3					÷3	13		8	÷
•		-		•				-		•	÷					-	•
• •	ł	ł		•	•		•	•	•		•			•		•	•
	1						4		-		+			+			+
			43			$\left[\mathbf{x} \right]$		10		1.		(\mathbf{x})		•			

Can you draw a rectangle on dotted paper? Start at a vertex and use a ruler to draw your first straight side. How many straight sides will you need? Rotate the paper to help you draw the shape more accurately.

Try drawing other shapes in the same way.

Choose a 2-D shape.

Build it on a geo-board.

Can you copy the shape onto dotted paper and squared paper?

Draw 2-D Shapes

Reasoning and Problem Solving

Using geoboards, how many different rectangles can you make?

What's the same about the rectangles? What's different?

Has your friend made any different rectangles?

What shape could be hiding under the spilt paint?

Prove your answer by drawing it.

Possib	le ar	ารพะ	er:

Could be any 2-D shape.

Encourage children to think about irregular pentagons, hexagon, etc. Draw a large rectangle on squared paper or dotted paper.

Draw a square inside the rectangle.

Draw a triangle below the rectangle.

Draw a pentagon that is bigger than the square.

Can you give instructions to your partner to help them draw different shapes?

6	•	~	×	•	(9 E)		$^{\infty}$	•	٠
	5	•	?	٠	٠	•	٠	•	•
ē	्री	Ē	+	-			ų.	T.	٠
0	•	t	1			1	×	- 8	٠
	•	ł.	•		0.0		•		•
	٠		٠		٠	٠	٠	÷	•
ê		-	÷	•		•	×.	-	٠
•	(•)		N	•	3 9 3		×	•	٠
•	•	•			•	•	•		•
			1		<u> </u>		\mathbf{v}		

Children may end up with a different picture from above however they should have four shapes drawn.

Lines of Symmetry

Notes and Guidance

Children are introduced to the concept of vertical lines of symmetry. They should be exposed to examples that are symmetrical and also examples that are not.

Children use a range of practical resources (mirrors, geoboards, paper folding) to explore shapes being halved along their vertical line of symmetry.

Mathematical Talk

- Where is the vertical line of symmetry?
- What does vertical mean?
- Which is the odd shape out? How do you know?
- What resources could you use to check if a shape has a vertical line of symmetry?

Varied Fluency

Can you fold these shapes to find a vertical line of symmetry? Draw the vertical lines of symmetry on these shapes. Circle the shape with an incorrect line of symmetry. Can folding help you prove your answers.

Lines of Symmetry

Reasoning and Problem Solving

Can you draw more than one four-sided shape that has a vertical line of symmetry?

Tommy has placed a mirror on the vertical line of symmetry. This is what he sees:

Can you complete the other half of the shape?

Possible answers:

square, rectangle,

kite.

Which 2-D shapes can be made when a vertical line of symmetry is drawn on a square?

Rectangle and triangle.

Sort 2-D Shapes

Notes and Guidance

Children recognise and sort 2-D shapes including circle, square, triangle, rectangle, pentagon, hexagon and octagon using a range of different orientations.

Children should be encouraged to sort the shapes in more than one way. They can then describe how they have sorted them using key language including side, vertex and symmetrical.

Mathematical Talk

- How have you sorted your shapes?
- How do you know you have sorted your shapes correctly?
- Can you sort the shapes in a different way?
- Can you find a shape which is in the wrong place?
- Can you see how these shapes have been sorted?

Varied Fluency

71

Sort 2-D Shapes

Reasoning and Problem Solving

Ron sorted the shapes in order of the number of sides. Has he ordered them correctly? Explain why.

Which shape is in the wrong set? Explain why.

Vertical line of symmetry	No vertical line of symmetry

No because the square should be before the pentagon.

The circle is in the wrong set because it does have a vertical line of symmetry.

Create your own labels and sort the shapes in a different way.

Possible labels: Blue Less than 4 vertices.

Make Patterns with 2-D Shapes

Notes and Guidance

Children use their knowledge of the properties of 2-D shapes to create patterns.

They are encouraged to place the shapes in different orientations when making patterns and recognise that it is still the same shape. In particular, squares do not become diamonds when turned sideways.

Mathematical Talk

- Can you explain the pattern? How does circling the set of shapes that repeat help you see the pattern?
- Continue the pattern. Which shape will be next?
- How are these patterns similar? How are these patterns different?

How can you work out which shape will come _____th?

Varied Fluency

Continue this pattern:

Can you circle the set of shapes that repeat?

What is the next shape in the pattern? What is the 9^{th} shape in the pattern?

['] Draw pictures to represent this pattern:

Square, circle, triangle, triangle, square, circle, triangle, triangle.

How many times does the pattern repeat? Which shape would be 10th?

Can you make your own repeating patterns using only one shape?

Make Patterns with 2-D Shapes

Reasoning and Problem Solving

Dora says that the 12th shape in this pattern will be a triangle.

 $\diamond \blacksquare \diamond \diamond \blacksquare \diamond \diamond$

Is she correct? How do you know? The 12th shape will be a triangle. Children may physically continue the pattern to find the answer or recognise that the triangle is the 3rd and count in 3s. How many different ways can you arrange these shapes to make a repeating pattern?

Can you translate this pattern using shapes?

Clap, clap, snap, clap, clap, snap, clap, clap,

There are many ways to make different repeating patterns. Encourage children to orally describe the pattern they have created.

Possible answer:

Square, square, triangle or pentagon, pentagon, circle.

Count Faces on 3-D Shapes

Notes and Guidance

Children use their knowledge of 2-D shapes to identify the shapes of faces on 3-D shapes. To avoid miscounting the faces children need to mark each face in some way. Children identify and visualise 3-D shapes from 2-D representations. Cones should be described as having 1 face and 1 curved surface; cylinders as having 2 faces and 1 curved surface and spheres having 1 curved surface.

Mathematical Talk

What do we mean by the 'face' of a shape? What is the difference between a face and a curved surface? What real life objects have 6 faces like a cube? Does a cuboid always have 2 square faces and 4 rectangular faces? Which 2-D shapes can you see on different 3-D shapes?

How can you make sure that you don't count the faces more than once?

Varied Fluency

Which 2-D shapes can you see on the surface of each one?

Complete the table:

Shape	Name of shape	Number of flat faces	Draw the faces

Count Faces on 3-D Shapes

Reasoning and Problem Solving

Teddy says my 3-D shape has 6 faces.
Mo says he must have a cube.
Is Mo correct?
Explain your answer.
Annie has sorted these 3-D shapes.

Can you spot her mistake? Can you add another shape to each set?

No because Teddy could have a cube or a cuboid.

The can should be in the 'both' set because it has flat faces and a curved surface.

Count Edges on 3-D Shapes

Notes and Guidance

Children use their knowledge of faces and curved surfaces to help them to identify edges on 3-D shapes. They learn that an edge is where 2 faces meet or where a face and a curved surface meet. To avoid over counting the edges children need to mark each edge in some way. Children identify and visualise the 3-D shape from a 2-D representation.

Mathematical Talk

What do we mean by the 'edge' of a shape?

How can you make sure that you don't count the edges more than once?

What do you notice about the shapes with _____ edges?

Varied Fluency

Look at these 3-D shapes:

How many edges does each shape have?

Complete the table:

Shape	Name	Edges	Faces

How many edges does this shape have?

Count Edges on 3-D Shapes

Reasoning and Problem Solving

Ron has sorted these shapes according to the number of edges. Which shape is in the wrong place? Explain why.

1 edge More than 1 edge

Eva says her 3-D shape has 12 edges.

Dora says she could have a cube, cuboid or square-based pyramid.

Is Dora correct? Explain your answer. The sphere (football) is in the wrong place because it doesn't have any edges, it has one curved surface.

Dora is not correct, because a square-based pyramid has 8 edges.

Compare these 3-D shapes.

What is the same and what is different?

Same – both have square faces, 6 faces, 12 edges, don't roll, can stack, no curved edges. Different – name, colour, size, one

only has square faces the other has squares and rectangles....

Count Vertices on 3-D Shapes

Notes and Guidance

Children use their knowledge of edges to help them to identify vertices on 3-D shapes. They understand that a vertex is where 2 or more edges meet. To avoid overcounting the vertices children need to mark each vertex in some way.

The point at the top of a cone can be referred to as an apex or a vertex.

Mathematical Talk

What is the difference between vertex and vertices?

How can you make sure that you don't count the vertices more than once?

How many edges meet to make a vertex on a 3-D shape?

How many sides meet to make a vertex on a 2-D shape?

Varied Fluency

How many vertices does each shape have?

Complete the table:

Shape	Name	Faces	Edges	Vertices

Place 3-D shapes in order starting with the shape with the fewest vertices.

Count Vertices on 3-D Shapes

Reasoning and Problem Solving

What is the same about these 2 shapes?

What is different about them? Talk about faces, edges and vertices in your answer.

Example answer:

Same – both have a triangular face, both have 5 faces.

Different – name, colour, size, one has 6 vertices the other has 5 vertices, one has a rectangular face, one has a square face....

Jack says:	False.
All 3-D shapes have at least one vertex. Is this true or false? Explain why	A sphere has no vertices. Could also be an opportunity to talk about the words apex and vertex.
Alex has a shape with 8 vertices. What 3-D shape could it be?	Cube or cuboid.

Sort 3-D Shapes

Notes and Guidance

Children use their knowledge of shape properties to sort 3-D shapes in different ways e.g. faces, shapes of faces, edges, vertices, if they roll, if they stack...

They should have access to a range of real life objects to sort and compare. Before sorting it may be useful to give children the opportunity to match the object e.g. a can of pop to a cylinder etc.

Mathematical Talk

How have you sorted your shapes?

- How do you know you have sorted your shapes correctly?
- Which method have you used to sort your shapes?
- Can you sort your shapes in a different way?
- Can your friend guess how you have sorted them?
- Can you group your solids by shape, type of faces and size?

Varied Fluency

- How could you sort these objects? Can you find some other classroom objects to add to each set?
 - How are these shapes grouped?

Could you group them in a different way?

Sort the 3-D shapes on your table. Label the groups.

Can you find more than one way?

81

Remove the labels. Can someone guess how you sorted?

Sort 3-D Shapes

Reasoning and Problem Solving

Annie is sorting 3-D shapes. She puts a cube in the cuboid pile.

> A cube is a type of cuboid.

Do you agree? Why?

Annie is right.

They both have 6 faces. They both have 12 edges.

A cube is a special kind of cuboid where all faces are squares. Jack is investigating which shapes stack and which shapes roll.

He says:

Some shapes will stack **and** roll.

Is he correct?

Sort your shapes using the Venn diagram. Explain what you notice about each set. Do all shapes with flat surfaces stack? Some shapes with flat faces will stack – they will need to have flat faces on opposite sides. (cubes, cylinders, cuboids)

Shapes with a curved surface will roll. (cone, sphere, cylinder)

Some shapes with a flat face cannot be stacked (square based pyramid, cone)

Make Patterns with 3-D Shapes

Notes and Guidance

Children use their knowledge of the properties of 3-D shapes to create patterns. They are encouraged to place the shapes in different orientations.

A wide range of examples of shapes should be used, including, construction shapes, cereal boxes, different sized balls etc.

Mathematical Talk

- Where can you see real life patterns with 3-D shapes?
- Can you explain your pattern to a partner?
- Does the shape always have to be a certain way up?
- Can you work out what shape would be the ____th?

Varied Fluency

Use some different coloured cubes to make a repeating pattern. Can you describe the pattern to your partner?

Using colours? Using letters? Using sounds?

Make a sequence of 3-D shapes.

Can you build a similar pattern with real life objects?

You could use food cans, boxes, balls, or other things in your classroom. Describe the pattern.

Can you make your own repeating patterns using only one 3-D shape?

Make Patterns with 3-D Shapes

Reasoning and Problem Solving

What is the same about these patterns? What is different about these patterns?

The first and second patterns use two shapes. Colour is a difference to note. In the 3rd pattern, one shape is used in different orientations. In the 2nd pattern, the shape is used twice each time.

Choose two 3-D shapes. What different repeating patterns could be made?	Possible answer: Cube, cylinder, cube
	Cube, cube, cylinder
Using the 3-D shapes:	Answer will depend on the shapes used.
 Make a repeating pattern where there are more cones than cuboids. Make a repeating pattern where the third shape is always a cylinder. 	

Year 2 | Spring Term | Week 10 to 12 – Number: Fractions

Overview Small Steps

Notes for 2020/21

Make equal parts	١
Recognise a half	
Find a half	
Recognise a quarter	
Find a quarter	
Recognise a third	
Find a third	(
Unit fractions	
Non-unit fractions	
Equivalence of $\frac{1}{2}$ and $\frac{2}{4}$	
Find three quarters	
Count in fractions	J

Concrete manipulatives and real life representations are important in these early stages of learning with fractions.

Don't worry too much about formal learning at this stage, instead focus on activities and play based learning.

All of this content will be formalised and built upon in Year 3.

Make Equal Parts

Notes and Guidance

Children understand the concept of a whole as being one object or one quantity.

Children explore making and recognising equal and unequal parts. They should do this using both real life objects and pictorial representations of a variety of shapes and quantities.

Mathematical Talk

What is the whole? What are the parts?

- How many parts is the object/quantity split into?
- Are the parts equal? How do you know?
- Do equal parts always look the same?

Is there more than one way to split the object/quantity into equal parts?

Varied Fluency

Use different colours to show how this shape can be split into equal parts.

How many ways can you find?

		e.g.						
								-

Look at the representations. Decide which show equal parts and which show unequal parts.

Can you make some of your own representations of equal and unequal parts?

Can you split the teddies into three equal groups? Can you split the teddies into three unequal groups?

How many ways can you split the teddies into equal parts? Be systematic in your approach.

Make Equal Parts

Reasoning and Problem Solving

Three children are splitting a square into equal parts.

Мо

Alex

Who has split the square into equal parts? Explain why.

All children have split the square into equal parts. Children may need to cut out the pieces and manipulate them to prove why. How many different ways can you put these beanbags into equal groups?

Children can sort the beanbags into groups of 1, 2, 3, 4, 6 and 12

Recognise a Half

Notes and Guidance

Children understand that halving is splitting a whole into two equal parts. They are introduced to the notation $\frac{1}{2}$ for the

first time and will use this alongside sentence stems and 'half' or 'halves'.

They should be introduced to the language of numerator, denominator and what these represent.

Children must explore halves in different contexts, for example, half of a length, shape or set object.

Mathematical Talk

How many equal parts has the shape/object/length been split into?

What fraction is this part worth?

In the notation $\frac{1}{2}$, what does the 1 represent? What does the 2 represent?

Varied Fluency

Recognise a Half

Reasoning and Problem Solving

Rosie says the shaded part of the shape does not show a half because there are four parts, not two equal parts.

Do you agree? Explain why.

Possible answer: I disagree because you can swap the red and white squares/rectangles and you would have two equal parts with one part shaded.

Find a Half

Notes and Guidance

In this small step children find a half of a set of objects or quantity.

Links should be made here to dividing by 2. Children may need to use the concept of sharing to find a half. Paper plates, hoops and containers can be used to share objects into 2 equal groups.

Mathematical Talk

How did you halve the sweets?

What is the value of the whole? What is the value of half of the whole? What do you notice?

What do you notice about your answers?

How can you use your answer to a half of 4 to help you work out a half of 40?

Varied Fluency

Find a Half

Reasoning and Problem Solving

Dora is asked to shade half of her shape. This is what she shades.

Is she correct? Explain why.

I am thinking of a number. Half of my number is more than 10 but less than 15. What could my number be? Yes because there are 12 squares altogether and 6 squares are shaded. 12 is the whole, half of 12 is 6

22, 24, 26, 28

Recognise a Quarter

Notes and Guidance

Children extend their knowledge of the whole and halves to recognise quarters of shapes, objects and quantities.

They continue to work concretely and pictorially, understanding that they are splitting the whole into 4 equal parts and that each part is one quarter.

Mathematical Talk

How many equal parts have you split the whole into if you have split it into quarters?

```
In \frac{1}{4} what does the 1 represent? What does the 4 represent?
```

Can you shade one quarter in different ways? How do you know that you have shaded one quarter?

How many quarters make a whole?

Varied Fluency

93

Recognise a Quarter

Reasoning and Problem Solving

Use paper strips to prove Alex is incorrect.

Possible answer: When the whole is the same, one quarter will be smaller because it is one of four equal parts compared to a half which is one of two equal parts.

True or False?

 $\frac{1}{4}$ of the shape is shaded.

Explain your answer.

Children will need to split the shape into four equal parts in order to show that this is true.

Giving children paper to fold will help them understand this concept.

Find a Quarter

Notes and Guidance

Children find quarters of shapes, objects and quantities. They begin by physically sharing amounts into four equal groups, or drawing around quantities then move towards working in the abstract. The link between the concrete, pictorial and abstract representations should be made explicit.

Support children in seeing the relationship between half of an amount and a quarter of an amount.

Mathematical Talk

- What is the whole? What is a half? What is a quarter?
- Can you circle a quarter in a different way?
- How do you know you have found $\frac{1}{4}$?
- What do you notice about half of 12 and one quarter of 12? Can you explain what has happened?
- If a quarter is _____ then the whole is _____

Varied Fluency

Find a Quarter

Reasoning and Problem Solving

Recognise a Third

Notes and Guidance

Children apply understanding of fractions to finding thirds. They continue to use the language of 'whole' and 'equal parts' and understand that one third is equal to one part out of three equal parts.

They write one third as a fraction and explain what each of the digits represents in the fractional notation.

Mathematical Talk

How many equal parts have you split the whole in to if you have split it into thirds?

In $\frac{1}{3}$ what does the digit 1 represent? What does the digit 3 represent?

Can you shade $\frac{1}{3}$ in a different way? How do you know that you have shaded $\frac{1}{3}$?

How many thirds make a whole?

Varied Fluency

Three friends are sharing a pizza. The pizza is split into equal parts.
Each part is worth a
This is the same as
$rac{1}{3}$ Shade $\frac{1}{3}$ of each shape.
What is the same? What is different?
Which shapes represent one third?
Explain why the other circles do not represent one third

Recognise a Third

Reasoning and Problem Solving

Dora says,

I have one third of a pizza because I have one slice and there are three slices left.

Do you agree? Explain your reasoning.

Dora is incorrect. She has one quarter of a pizza because there were four slices altogether and she has one of them. There would need to only be three slices altogether for her to have one third.

Alex, Annie and Whitney each show a piece of ribbon.

Whitney shows
$$\frac{1}{2}$$
 of her whole ribbon.

Alex shows $\frac{1}{4}$ of her whole ribbon.

Annie shows $\frac{1}{3}$ of her whole ribbon.

Alex's piece will be the longest because she will have four parts altogether. Whitney's piece will be the shortest because she will only have two parts.

Find a Third

Notes and Guidance

Children build on their understanding of a third and three equal parts to find a third of a quantity.

They use their knowledge of division and sharing in order to find a third of different quantities using concrete and pictorial representations to support their understanding.

Mathematical Talk

How many objects make the whole?

Can we split the whole amount into three equal groups?

What is a third of ____ ?

What is staying the same? What is changing?

How does changing the whole amount change the answer?

Is the answer still worth a third? Explain why?

Varied Fluency

Complete:

Find a third

Reasoning and Problem Solving

Annie has a piece of ribbon.

She cuts it into three equal parts.

One third of the ribbon is 6 cm long.

How long would half the ribbon be?

Half the ribbon would be 9cm. (6 × 3 = 18cm Half of 18 = 9cm)

A bar model would be a particularly useful pictorial representation of this question. Ron is thinking of a number.

27, 30, 33

One third of his number is greater than 8 but smaller than 12.

What could his number be?

Unit Fractions

Notes and Guidance

Children understand the concept of a unit fraction by recognising it as one equal part of a whole. They link this to their understanding of recognising and finding thirds, quarters and halves.

Children also need to understand that the denominator represents the number of parts that a shape or quantity is split into.

Mathematical Talk

How can we represent these unit fractions in different ways?

Why do we call them a unit fraction? Where can we see the unit?

Show me $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ of the model/counters etc. What is the same? What is different?

Which unit fraction is bigger/smaller if the whole is the same?

Varied Fluency

What is the same and what is different about each bar model?

📮 What fraction is shaded in each diagram?

What do you notice? Complete the sentence.

101

Unit Fractions

Reasoning and Problem Solving

Non-Unit Fractions Varied Fluency Notes and Guidance Children are introduced to the non-unit fractions $\frac{2}{3}$ and $\frac{3}{4}$ for What fraction is shaded in each diagram? the first time. They also need to look at fractions where the whole is shaded and how these fractions are written. Children see that the numerator and denominator are the same when the fraction is equivalent to one whole. **Mathematical Talk** Shade $\frac{3}{4}$ of each shape. How many quarters make a whole? How many thirds make a whole? What do you notice? How many quarters are there in $\frac{3}{4}$? Shade in the whole of each circle. What fraction is $\ln \frac{3}{4}$ what does the digit 3 represent? What does the digit 4 represented in each case? represent? Give me an example of a unit fraction and a non-unit fraction.

103

Non-Unit Fractions

Reasoning and Problem Solving

What mistake might Alex have made?

She has shaded two quarters of the shape. She may have thought that the numerator represents the number of parts that are shaded and the denominator represents the number of parts that aren't. She doesn't realise the denominator represents the whole.

Sort	the fractior	Top left: Empty			
		Fractions equal to one whole	Fractions less than one whole		Top right: $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{2}$ Bottom left: $\frac{2}{3}$
	Unit fractions				and $\frac{4}{4}$
	Non-unit fractions				Bottom right: $\frac{3}{4}$ and $\frac{2}{3}$
$\frac{3}{4}$ WhatAreWhat	$\frac{2}{2} \frac{1}{3}$ at do you no there any b at fraction co	There are no unit fractions that are equal to one whole. $\frac{1}{1}$ would fit here.			

104

Equivalence of $\frac{1}{2}$ and $\frac{2}{4}$

Notes and Guidance

Children explore the equivalence of two quarters and one half of the same whole and understand that they are the same.

Children tackle this practically, using strips of paper and concrete apparatus (e.g. counters, Cuisenaire rods, number pieces).

Mathematical Talk

- What does equivalent mean? What symbol do we use?
- Are these two fractions equal? (half and two quarters)
- Are the numerators the same? Are the denominators the same?
- How many quarters are equivalent to a half?

Varied Fluency

Using two identical strips of paper, explore what happens when you fold the strips into two equal pieces and four equal pieces.

Compare one of the two equal pieces with two of the four equal pieces. What do you notice?

Shade one half and two quarters of each shape.

Give children an amount of counters or concrete objects, can you find one half of them? Can you find two quarters of them? What do you notice?

Equivalence of $\frac{1}{2}$ and $\frac{2}{4}$

Reasoning and Problem Solving

Find Three Quarters

Notes and Guidance

Children use their understanding of quarters to find three quarters of a quantity.

They work concretely and pictorially to make connections to the abstract.

Children should be encouraged to spot patterns and relationships between quarters of amounts.

Mathematical Talk

How many quarters make a whole?

Can you represent this in a bar model?

How many equal parts is $\frac{3}{4}$?

Can you spot any patterns?

What has stayed the same? What has changed? What do you notice?

Varied Fluency

Find Three Quarters

Reasoning and Problem Solving

Amir is using beanbags and hoops to find three quarters of 20

Can you spot his mistake?

Amir hasn't created equal groups. 20 should be shared into 4 equal parts. There should be 5 beanbags in each hoop so three quarters of 20 is 15 not 14

Eva eats three-quarters of her sweets. She eats these sweets.

How many sweets does Eva have left?

Eva has 2 sweets left. Encourage children to do this practically.

Count in Fractions

Notes and Guidance

Using their knowledge of halves, thirds and quarters, children count in fractions from any number up to 10.

They begin to understand that fractions can be larger than one whole.

Teachers can use a number line, counting stick or hoop to support them in counting in fractions.

Mathematical Talk

- Which number are you starting on?
- How many parts are there in your fraction whole?
- Which fraction will come next?
- What patterns can you spot?

Continue the pattern:
$$\frac{1}{3}$$
, $\frac{2}{3}$, 1, $1\frac{1}{3}$, $1\frac{2}{3}$, 2, $2\frac{1}{3}$, $2\frac{2}{3}$,

Varied Fluency

What would the next image in the sequence look like?

What do you notice about the fraction of yellow cubes? Can you count the fractions represented?

- In groups of 4, give each child an identical strip of paper. Fold each of them into 2 equal parts. Count how many halves there are on two strips of paper, on three strips, on 4 strips. Predict: how many halves will there be on six, seven, eight strips?
- Shade the correct number of parts for each fraction.

 $\frac{2}{3}$ $\frac{3}{3}$

What's the same, what's different?

109

Count in Fractions

Reasoning and Problem Solving

Look at this pattern.

What would come next? Write the next fraction and draw the representation.

What would be the 8th fraction in the pattern?

Five thirds, $\frac{5}{3}$ Children may think that the later models are in sixths, it is important to stress that the whole one is still made up of three and so we are still counting in thirds.

The 8th fraction would be $\frac{8}{3}$ or $2\frac{2}{3}$

Summer Scheme of Learning

#MathsEveryoneCan

2020-21

New for 2020/21

2020 will go down in history. The world has changed for all of us.

We want to do as much as we can to support children, teachers, parents and carers in these very uncertain times.

We have amended our schemes for 2020/21 to:

- \star highlight key teaching points
- ★ recap essential content that children may have forgotten
- ★ flag any content that you might not have covered during the school closures period.

We hope these changes will add further value to the schemes and save you time.

Lesson-by-lesson overviews

We've always been reluctant to produce lesson-bylesson overviews as every class is individual and has different needs. However, many of you have said that if blended learning becomes a key feature of school life next year, a weekly plan with linked content and videos could be really useful.

As always, we've listened! We've now produced a complete lesson-by-lesson overview for Y1 to Y9 that schools can use or adapt as they choose. Each lesson will be linked to a free-to-use home learning video, and for premium subscribers, a worksheet. This means that you can easily assign work to your class, whether they are working at home or in school.

Inevitably, this lesson-by-lesson structure won't suit everyone, but if it works for you, then please do make use of this resource as much as you wish.

Rose

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of • time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of opportunities to build reasoning and problem solving elements into the curriculum.

For more guidance on teaching for mastery, visit the NCFTM website:

https://www.ncetm.org.uk/resources/47230

Concrete - Pictorial - Abstract

We believe that all children, when introduced to a new concept, should have the opportunity to build competency by taking this approach.

Concrete – children should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial – alongside this children should use pictorial representations. These representations can then be used to help reason and solve problems.

Abstract – both concrete and pictorial representations should support children's understanding of abstract methods.

Need some CPD to develop this approach? Visit www.whiterosemaths.com for find a course right for you.

Supporting resources

NEW for 2019-20!

We have produced supporting resources for every small step from Year 1 to Year 8.

The worksheets are provided in three different formats:

- Write on worksheet ideal for children to use the ready made models, images and stem sentences.
- Display version great for schools who want to cut down on photocopying.
- PowerPoint version one question per slide. Perfect for whole class teaching or mixing questions to make your own bespoke lesson.

For more information visit our online training and resources centre <u>resources.whiterosemaths.com</u> or email us directly at <u>support@whiterosemaths.com</u>

White Rose Maths

4

Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who's your favourite?

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Number: Place Value Nur				nber: Addition and Subtraction			Measurement: Multiplication and Division			Consolidation	
Spring	Number: Multiplication and <u>Division</u>			Stati	istics	Geometry: Properties of Shape			Number: Fractions			
Summer	Measurement: Geometry: Length and Position and Height Direction		Conso and pr solv	lidation roblem ving	Measurement: Time		Measurement: Mass, Capacity and Temperature			Consolidation		

Year 2 | Summer Term | Week 1 to 2 – Measurement: Length & Height

Overview Small Steps

Compare lengths and heights	R	
Measure lengths (1)	R	
Measure lengths (2)	R	
Measure length (cm)		
Measure length (m)		
Compare lengths		
Order lengths		
Four operations with lengths		

Notes for 2020/21

It is important to spend time recapping what is meant by length and height.

Children should revisit the idea of measuring length with nonstandard units such as cubes before moving on to measure length in centimetres and metres.

Compare Lengths & Heights

Notes and Guidance

Children use and understand the language of length such as long, longer, short, shorter, tall, taller. They recognise this language will change depending on what type of length they are describing and comparing.

Children understand that height is a type of length. They should also be exposed to lengths that are equal to one another.

Mathematical Talk

Which person is taller/shorter? Which pencil is shorter/longer?

Are we measuring the height or length of something? What is the same? What is different?

How many different sentences can you make to compare the vehicles? Say them to your partner.

Varied Fluency

Use the words longer and shorter in the sentence stems to

Which pencil is the longest? Which pencil is the shortest?

Compare the vehicles using the words to help you.

length height longer same taller shorter

Compare Lengths & Heights

Reasoning and Problem Solving

Possible answer: Rosie – Mrs Rose is **taller** than Jack. Alex - Jack is **shorter** than Mrs Rose. Mo – Mrs Rose is taller than Jack. Taller is a better word than longer because we are comparing height.

Eva needs line up one end of the pencils and see which is longer.

explore other situations where they are asked to compare more than two objects.

Measure Length (1)

Notes and Guidance

Children use non-standard units, such as cubes, hands and straws to measure length and height. Ensure children understand the units they use need to be of equal length. Children recognise that longer, non-standard units are more suitable for measuring the length and height of longer/taller objects. Children need to understand that non-standard units should be exactly in line with one end of the object with no gaps between them to get an accurate measurement.

Mathematical Talk

What other things could you use to measure how long a pencil is?

What could you use to measure how tall you are? Is it easier to measure someone lying down or standing up?

What could you use to measure the length of your classroom?

Why is it important to measure in a straight line?

Varied Fluency

- The pencil is cubes long.
- The _____ is ___ cubes long.
- Mr White is 5 sticks tall. Choose a suitable piece of equipment to measure how tall your friend is.

- Which is longer your maths book or a lunch box?
 - The

is longer than the

n the

Choose a unit to measure the objects to check you are correct.

Measure Length (1)

Reasoning and Problem Solving

True or false?

The flower is 8 cubes tall. Explain your answer. False because the cubes should be level with the bottom of the flower. The flower is about 6 cubes tall.

Whitney measures the length of two toys.

She says,

Do you agree with Whitney? Explain your answer. Whitney is wrong. Both toys are 4 units long, but the rubber and the cubes are different lengths so the toys are not the same length.

Measure Length (2)

Notes and Guidance

Children build on prior knowledge of measuring length and height using non-standard units and apply this to measuring using a ruler.

They should be able to understand that objects can vary in length and size, so a standard unit of measurement is required.

It is important that children know to measure from 0 cm.

Mathematical Talk

What do the numbers on the ruler mean? (1 cm etc.)

Where should we place the object to start measuring it?

Does the ruler look like anything else we have used? (number line)

Can you count how many cm the _____ measures?

How does using a ruler help us to compare objects?

Varied Fluency

Measure Length (2)

Reasoning and Problem Solving

Measure Length (cm)

Notes and Guidance

Children measure to the nearest centimetre using a ruler or tape measure.

They measure both length and height and focus on the importance of measuring from 0 rather than the end of the ruler or tape measure.

Mathematical Talk

What is the length?

How can the numbers on the ruler help us?

How do you know you have drawn a line that is 5cm long? How can you check?

Why is it important to start measuring from 0 on the ruler?

Varied Fluency

Choose a variety of objects and practice measuring them using a centimetre ruler. Remember to line up the object to the 0 mark on the ruler.

e.g. How long is the pencil to the nearest centimetre?

What other objects can you find to measure the height of?

Draw a line that is:

- 5 cm long
- 8 cm long
- Longer than 4 cm but shorter than 7 cm.

Measure Length (cm)

Reasoning and Problem Solving

How long is this piece of string? How could you find out?

Does the length change if you change the orientation?

The length will not change if you change the orientation so it will be easier to measure if you put it in a straight line.

Mo has used the ruler to measure the length of the car.

Mo says the car is 8 centimetres long. Do you agree? Explain your answer. Mo is incorrect because he has not lined the car up with the 0 marker. If he had measured from 0 he would see that the car is 7 cm long.

Measure Length (m)

Notes and Guidance

Children begin to measure larger objects using metres. They think about whether it is better to measure items in centimetres or metres and discuss the reasons why.

Children do not yet convert from metres to centimetres; however they may see that 100 centimetres is the same as 1 metre and measurements can be written as mixed units e.g. the child is 1 metre and 25 centimetres tall.

Mathematical Talk

When would it be appropriate to use metres?

Why is more efficient to use metres instead of centimetres for longer objects/distances?

What equipment would you use to measure longer objects/distances?

Varied Fluency

Use a metre stick to measure objects in your classroom and place them into the groups.

Can you find anything that is exactly one metre?

Use a metre stick to count up in 10 cm blocks. What do you notice about 100 cm?

Possible responses: it is the same a metre, 1 m is written, it is the end of the stick.

⁷ Measure the length of the school hall. Record the length in metres and centimetres, e.g. 15 metres and 13 centimetres.

Measure Length (m)

Reasoning and Problem Solving

Usain Bolt can run 100 m in 9.58 seconds (just under 10 seconds).

How far do you think you can run in 10 seconds? Do you think it will be more or less than 100 m?

Measure how far you and your friends can run in 10 seconds. Record your answers in metres and centimetres.

Circle the objects that you would measure in metres. Tick the objects that you would measure in centimetres.

Children will have a variety of answers. They could measure using different equipment including metre sticks and trundle wheels.

Circle elephant, school and tree

Amir has a metre stick.

He wants to measure the length of his classroom.

Explain to Amir how he could measure the length of his classroom.

Amir can measure the length of the classroom by putting a marker at the end of the metre stick and then starting again at that point, moving his metre stick as he measures.

Compare Lengths

Notes and Guidance

Children compare lengths of objects using comparison language and symbols. They use language such as longer than, shorter than, taller than, longest, shortest and tallest.

Children only compare using the same unit of length in a question. However, the same number but different unit of measure could also be used to check that children understand metres are bigger than centimetres.

Mathematical Talk

Which is longer: 10 centimetres or 10 metres?

Which symbols can we use to compare lengths?

What is the difference between using taller than and longer than? When would we use taller than instead of longer than?

Varied Fluency

Compare the lengths using **longer than**, **shorter than**, or **the same as**.

Choose 2 objects from your classroom. Estimate the length of each object. Then measure both objects and compare the lengths using <, > or =

Try this again, but this time measuring your friends' heights.

Compare Lengths

Reasoning and Problem Solving

Order Lengths

Notes and Guidance

Children order more than two lengths from shortest to longest and vice versa. This will help them recap their understanding of ordering numbers to 100

Children will order given lengths as well as ordering objects by measuring each length themselves.

They will use the language of shorter, shortest, longer and longest to describe the order.

Mathematical Talk

How is ordering lengths similar to ordering numbers on a number line? Can we use a number line to help us?

Can we estimate which object is the longest before measuring?

Varied Fluency

['] Eva, Jack and Rosie are comparing the length of ribbons. Complete the sentences.

Choose five objects in your classroom.

Measure them using a ruler.

Order the objects from longest to shortest.

Write at least three sentences to describe the objects using the words **longer**, **longest**, **shorter** and **shortest**.

Order Lengths

Reasoning and Problem Solving

Four children are measuring their Shortest: Rosie Dora says, heights. Eva Mo The taller you are, the Eva is taller than Rosie, but not as tall as Tallest: Dexter longer your shoes Mo. are. Dexter is taller than Mo. Write down their names in order of their heights, starting with the shortest. Measure the height of people in your class and measure the length of their shoes. Is Dora correct?

Children will find different results depending on their class.

Four Operations with Lengths

Notes and Guidance

Children draw on their skills of the four operations and apply their understanding to length.

They solve one-step and two-step problems relating to length and use concrete and pictorial representations to calculate efficiently.

Mathematical Talk

Can you draw a bar model to help to decide which operations to use?

What are the key words in the question?

Can you ask and answer any different questions using the objects and information given?

Varied Fluency

Teva, Jack and Rosie each have a piece of ribbon.

- How much longer is Jack's ribbon than Eva's?
- Jack and Rosie put their ribbons together. How long are they altogether?
- Eva cuts three more ribbons of the same length as hers. What is the total length of all four ribbons?
- Eva cuts her ribbon in half. What is the length of each piece?
- Teddy has a toy train and a toy plane. The train is 28 cm long. The plane is 16 cm longer. How long is the plane?

The toy train is double the length of a toy car. How long is the toy car?

Draw bar models to help you.

Four Operations with Lengths

Reasoning and Problem Solving

Here is a strip of orange paper. The orange strip is There are 3 teddies in a box. The yellow teddy is 10 cm long and a 39 cm tall. The brown teddy is 15 cm taller than the blue strip is 40 cm yellow teddy. long. The brown teddy is A blue strip is four times longer than a 54 cm tall. orange strip. The yellow teddy is 3 cm shorter than the pink teddy. The brown teddy is The pink teddy is 42 cm tall. 12 cm taller. The strips are joined end to end. How tall are the brown and yellow teddies? 50 cm How much taller is the brown teddy than How long is the orange strip? the pink teddy? How long is the blue strip?

Year 2 | Summer Term | Week 3 to 4 – Geometry: Position & Direction

Overview Small Steps

Describe position (1)	R	
Describe position (2)	R	
Describe movement		
Describe turns		
Describe movement and turns		
Making patterns with shapes		

Notes for 2020/21

Time should be spent ensuring that children are able to confidently describe position before moving on to look at movements and turns.

The concept of position is quite difficult to grasp especially when taught remotely so children might need to spend a little longer on the basics.

Describe Position (1)

Notes and Guidance

Children use 'left', 'right', 'forwards' and 'backwards' to describe position and direction. They will describe the position of objects and shapes from different starting positions.

You could use board games such as Snakes and Ladders and Twister to explore positional language.

Where possible, this concept should be explored practically.

Mathematical Talk

What are the different directions we can move in?

How would I get to the?

How could you describe the movement? How could we record the movement?

How would I get from the to the?

Varied Fluency

⁷ Use cones to mark out a route for a partner. Describe the route your partner needs to take using the words 'left', 'right', 'forwards' and 'backwards'.

Use a grid to move a bot to different places. Use the words 'left', 'right', 'forwards' and 'backwards' to describe the movements.

🚺 Co

Complete the sentences using 'left' and 'right' to describe the position of the coins.

The £1 coin is to the _____ of the 1p coin. The 50p coin is to the _____ of the 1p coin. The 2p coin is to the _____ of the 50p coin.

Describe Position (1)

Reasoning and Problem Solving

Both children could be correct because they have not stated what the pink doughnuts are left or right in relation to.

The pink doughnuts are on the left of the yellow doughnuts and the pink doughnut are on the right of the blue and brown doughnuts.

The triangle on the left is red. ٠

٠

٠

٠

٠

٠

٠

green.

green.

triangle is red.

rectangle is blue.

28

Describe Position (2)

Notes and Guidance

Children will build upon directional language 'left' and 'right' to assist with describing position. They will describe position using: 'top', 'in between', 'bottom', 'above' and 'below'. Children explore the position of objects and shapes from different starting points.

Where possible, this concept should be explored practically both in and out of the classroom.

Mathematical Talk

Where is the _____ in relation to you?

What is _____ of you?

What is _____ of this object?

How can we describe the position of ____?

Can you create your own instructions to build a tower?

Varied Fluency

Think about where you are sitting in the classroom.What can you see around you? Complete the table.

In front of me	Behind me	To the left of me	To the right of me

Use objects in your classroom or outside area to complete the sentences. Use the words: 'top', 'middle', 'bottom', 'above' and 'below' to describe the position.

The is above .

```
The _____ is below _____.
```

In between _____ and _____ is _____.

Above ______ is _____ and _____.

There is nothing between _____ and _____.

Use 5 cubes to build a tower.

- Start with a yellow cube.
- Place a blue cube on top of the yellow cube.
- Place a white cube below the yellow cube.
- Place a red cube on the top of the tower.
- Place the green cube in between the yellow and white cube.

Describe Position (2)

Reasoning and Problem Solving

Describing Movement

Notes and Guidance

Children use language 'forwards', 'backwards', 'up', 'down', 'left' and 'right' to describe movement in a straight line.

Children will practically follow and give directions with a partner before writing directions for routes and recording routes on 2-D grids. Teachers need to discuss the direction objects are facing, in order to correctly complete left and right movements.

Mathematical Talk

How far have you/has your partner moved? In what direction have you/has your partner moved?

What direction are we facing in at the start? Why is this important?

Can you describe the movements made by ____?

How could we record these movements?

Varied Fluency

- Using the words forwards, backwards, left and right, give your partner some instructions to follow when moving around the classroom/playground.
- Complete the stem sentences to describe the movements made.

Describing Movement

Reasoning and Problem Solving

Is Amir correct? Explain your reasoning. Amir is incorrect. The sheep has moved 2 squares to the left because of the way it was facing to begin with.

How many different routes can you write for the bee to get to the hive?

Use the words forwards, backwards, left and right.

Possible answers: Forward 3, Right 1.

Right 1, Forward 3.

Right 2, Forward 3, Left 1.

Right 1, Forward 3.

Right 2, Forward 2, Left 1, Forward 1.

There are more routes for the children to find.

Describing Turns

Notes and Guidance

Children describe turns using the language 'full turn', 'half turn', 'quarter turn', 'three-quarter turn', 'clockwise' and 'anticlockwise'.

It is important to encourage the children to take into consideration which direction the object/person is facing to begin with.

Mathematical Talk

What direction was the turn?

- Describe the turn that the number shapes have made?
- Could there be more than one answer? Why?

Varied Fluency

Turn a figure.

Ask your partner to describe the turn using the language, 'full turn', 'half turn', 'quarter turn', 'three-quarter turn', 'clockwise' and 'anticlockwise.

Match the turn to the description.

Describe how the triangle has turned each time.

The triangle has made a _____turn _____.

The triangle has made a _____ turn _____.

The triangle has made a _____ turn _____.

Describing Turns

Reasoning and Problem Solving

Look at the number shape below:

How could the number shape have turned?

Describe all possibilities.

Possible answers: No turn Quarter/half/ three-quarter or full turn clockwise.

Quarter/half/ three-quarter or full turn anticlockwise. Always, Sometimes, Never

If two objects turn in different directions they will not be facing the same way.

Sometimes. It depends on how far the objects are turned – quarter, half, three quarters or full.

Describing Movement & Turns

Notes and Guidance

Children use their knowledge of movement and turns to describe and record directions.

They need to be aware of the direction the object is facing before it is turned.

Children may explore movement and turns further using ICT or during P.E.

Mathematical Talk

Which direction is _____ facing to begin with? Why is this important?

Is ____ moving or just changing direction? How do you know?

How can we record the directions given?

Are there any other routes that could be taken?

Varied Fluency

Å		

Forward 1 square. Turn left. Forward 1 square, quarter turn anticlockwise.

Forward 1 square. Make a quarter turn clockwise.

Forward 1 square. Make a three quarter turn anti-clockwise. Forward 3

Write directions for Dennis to get to each place on the map.

Describing Movement & Turns

Reasoning and Problem Solving

How many different routes can you find to get from start to finish. Use the words 'forwards', 'backwards', 'clockwise', 'anti-clockwise' and 'quarter turn'.

	Finish
Start	

Children will find a range of routes. For example: Start Turn a quarter anticlockwise Forward 1 Turn a quarter clockwise. Forward 1 Turn a quarter clockwise. Forward 3 Turn a quarter anticlockwise.

Forward 1

Making Patterns with Shapes

Notes and Guidance

Children build on previous knowledge of patterns and repeating patterns from Year 1

They now describe and create patterns that involve direction and turns.

Children use the language 'clockwise', 'anti-clockwise', 'quarter', 'half' and 'three quarters' to describe patterns.

Mathematical Talk

What is happening in the pattern?

What would the next shape look like?

How would you describe its position?

How can we work out the missing shape?

Varied Fluency

Continue these patterns by adding the next 3 shapes.

Fill in the missing shapes to complete the patterns.

 $\downarrow \leftarrow \uparrow \rightarrow \downarrow \leftarrow \uparrow \rightarrow \downarrow \leftarrow \uparrow$

Making Patterns with Shapes

Reasoning and Problem Solving

Year 2 | Summer Term | Week 7 to 8 – Measurement: Time

Overview

Small Steps

Telling time to the hour	R)
Telling time to the half hour	R	
O'clock and half past		
Quarter past and quarter to		
Telling time to 5 minutes		
Writing time	R	
Hours and days		
Find durations of time		
Compare durations of time		J

Notes for 2020/21

Children may have missed the time block in Year 1 making this their first formal experience of telling the time.

Children should revisit the basics specifically focusing on telling the time to the hour and half hour before looking at the two combined.

Time to the Hour

Notes and Guidance

Children are introduced to telling the time to the hour using an analogue clock. They learn the language of o'clock and understand the hour hand is the shorter hand and the minute hand is the longer hand.

Children read the time to the hour and know when the minute hand is pointing upwards to the number 12 it is an o'clock time, and understand that they need to look at the hour hand to see which hour it is.

Mathematical Talk

There are two hands on the clock. What is the same about each hand? What is different about each hand compared to the other?

Looking at all three clock faces, what is the same about the hands? What is different about them?

Where will the hour hand be at ____? Where will the minute hand be at ____? Can you show me _____?

Varied Fluency

Match the times to the clocks.

Time to the Hour

Reasoning and Problem Solving

The time is 3 o'clock.

Can you spot Amir's mistake?

Amir has read the hour hand and the minute hand the wrong way round. At three o'clock the longer minute hand should be pointing at 12 and the shorter hour hand should be pointing at 3

When it is 11 o'clock both hands point at 11

Alex

Alex is incorrect. If the time is eleven o'clock, the hour hand should be pointing at 11 and the minute hand should be pointing at 12

Time to the Half Hour

Notes and Guidance

Children are introduced to telling the time to the half hour. They learn the language half past.

They understand that, at half past the hour, the minute hand has travelled half way around the clock from the twelve and is pointing at the six and the hour hand is half way between the hours e.g. half way between one and two or half way between nine and ten.

Mathematical Talk

Which is the hour hand? Which is the minute hand? How do you know?

Where does the minute hand point to at half past? Can you see that the minute hand has travelled halfway around the clock? Could you show this to your partner?

Can you show me _____?

Varied Fluency

Draw the hour hand and the minute hand on clock faces to show these times:

Half past 1

Half past four

Half past 8

Time to the Half Hour

Reasoning and Problem Solving

Tommy has read the minute hand as showing the number of minutes past the hour, rather than understanding that the minute hand pointing to 6 means half past. The time is half past one.

Read the instructions and draw the hands on the clock.

- The minute hand is pointing at the ٠ six.
- The hour hand is half way between ٠ 10 and 11

What time is it?

The time is half past 10

O'clock and Half Past

Notes and Guidance

Children recap the Year one objective of telling the time to the hour and half past the hour.

Children should be given the opportunity to create times using individual clocks with moveable hands.

Children read and write times from clocks.

Mathematical Talk

What do the numbers represent on the clock face? Which is the hour hand? Which is the minute hand?

Where will the hour hand be at ____ ? Where will the minute hand be at ____? What do you notice about the minute hand at half past?

Can you show me _____?

Varied Fluency

O'clock and Half Past

Reasoning and Problem Solving

Can you spot the mistakes they've made?

Alex is correct. Dora has confused the minute hand with the hour hand. Amir has not noticed that the hour hand has not gone past 3 yet.

It is half past 11 so the hour hand should be on the 11

Is Alex correct? Explain your reasoning.

Alex is incorrect. If the time is half past 11 the hour hand should be half way between the 11 and 12

Oh no! The minute hand has fallen off the classroom clock!

Lunchtime is at 12:00

Have the children missed their lunchtime?

Unfortunately, the children have missed their lunch. The hour hand is halfway between 12 and 1 so the time is 12:30

Quarter Past & Quarter To

Notes and Guidance

Children read and draw the times 'quarter to' and 'quarter past'. They use their knowledge of fractions and turns to identify quarter past and quarter to.

Children should recognise that the hour hand moves along with the minute hand. Therefore when the time is quarter past the hour, the hour hand will be just past the hour and when the time is quarter to, the hour hand will be just before the hour.

Mathematical Talk

Where are the hands pointing to?

Can we divide the clock face into four equal parts? Can we link this to fractions?

If the minute hand is pointing at 3, how many minutes have passed the hour?

If the minute hand is pointing at 9, how many minutes until the next hour?

Show me quarter past/to....

Varied Fluency

Look at the clocks.

Discuss how the minute hand has travelled. Identify when the time is quarter past the hour and quarter to the hour. Give the children individual clocks with moveable hands and ask them to make quarter to/past times.

Match the clocks to the correct time.

Quarter to four Quarter past four Quarter to three Quarter past three

Complete the table.

Quarter Past & Quarter To

Reasoning and Problem Solving

Quarter past is always later than quarter to.

Do you agree with Teddy? Explain why.

How many quarters of an hour are between 7 o'clock and 9 o'clock.

Explain how you found the answer.

It depends on the hour of the times given. For example: quarter to 12 is later than quarter past 11 If the hour remains the same than Teddy is correct.

There are 8 quarters of an hour between 7 o'clock and 9 o'clock.

The train to Blackpool leaves at quarter past and quarter to every hour.

Make a list of the times of the trains Oliver can catch if he gets to the train station between 2 o'clock and half past 4

Oliver could catch the following trains: Quarter past 2 Ouarter to 3 Quarter past 3 Ouarter to 4 Quarter past 4

Telling Time to 5 Minutes

Notes and Guidance

Children read and show analogue time to 5-minute intervals. Children should be confident at counting from 0 to 60 in steps of 5 so they can then apply this to counting around the clock in fives and use this method to work out what time is shown.

Children need to recognise that once the minute hand gets past 6 the time is described as 'to' the next hour, rather than 'past' the hour.

Mathematical Talk

How many minutes are there between each pair of numbers on a clock?

How many different ways can you count round the clock? Where will the minute hand be at _____? Where will the hour hand be at _____?

How do we know whether it is a 'past' or a 'to' time? Can you show _____ past/to ____?

Varied Fluency

Using a demonstration clock, ask the children to count round in minutes. When the minute-hand is pointing to a number, record how many minutes have passed the hour in a table. What do they notice? Will this pattern continue?

Minute hand pointing to	Minutes past the hour
1	5
2	10
3	15

Show the children times to 5-minute intervals on a large clock. Ask the children to identify what time is being shown. Give the children individual clocks with moveable hands. Ask the children to make times to 5 minute intervals.

Match the times to the correct clock.

Telling Time to 5 Minutes

Reasoning and Problem Solving

Sophia starts her Maths questions at 10 past 11

Each question takes her 5 minutes to complete. She completes 7 questions.

What time does Sophia finish her Maths questions? Explain how you found the answer. Sophia finishes her Maths questions at quarter to 12

Children may use a clock to count round seven lots of 5 minutes.

Children may do $5 \times 7 = 35$ and count 35 minutes round the clock.

Writing Time

Notes and Guidance

Children explore the difference between seconds, minutes and hours. They decide which activities would be measured in each unit of time.

Children explore suitable equipment e.g. stopwatches or sand timers to measure durations of time. They carry out activities and use suitable equipment to measure how long each activity takes e.g. timing how long it takes to run around the playground using a stopwatch.

Mathematical Talk

Would you measure the activity in hours, minutes or seconds?

How many star jumps do you think you can do in 10 seconds?

Let's count to 20 seconds in our heads, stand up when you think we reach 20 seconds. How close were you?

Varied Fluency

Using a stopwatch, record how many times you can do these activities in 20 seconds.

- Star jumps
- Write your name
- Hops on the spot

Can you think of any activity which takes 20 seconds?

Would you measure the duration of the activities in seconds, minutes or hours? Sort the activities into three groups: seconds, minutes and hours.

Complete the sentences using seconds, minutes or hours.

- Playtime is about 20 _____ long.
- The school day is about 6 _____ long.

Writing Time

Reasoning and Problem Solving

Are the units of time chosen sensible for these activities?

- A football match measured in ٠ seconds.
- A lap around the school playground . measured in minutes.
- A birthday party measured in hours. ٠

Explain your answers.

Not sensible- a football match is measured in minutes because to use seconds would involve very large numbers.

Dependent on the school playground, could be sensible, or it could be more sensible to measure in seconds.

Sensible - parties can last at least 2 hours.

still measure time in minutes using her clock The minute hand moving the distance from one increment to another shows one minute has passed. The minute hand moving one complete turn shows that one hour has passed.

Do you agree with Dora?

Explain your answer.

Hours and Days

Notes and Guidance

Children learn that there are 24 hours in a day and 60 minutes in an hour.

Children use clocks to convert minutes to hours and minutes. Children should be encouraged to use their knowledge of counting in fives to help them convert.

Mathematical Talk

How many hours are there in a full day?

How many minutes are in an hour and a half? How could we calculate this?

- Could we count in half an hours? How many half an hours are in one hour?
- How many half an hours will there be in two hours?

Varied Fluency

Starting from midnight show every hour on the clocks for a full day.

There are

- hours in a day.
- Using the clock, show how many minutes there are in 1 hour.
 1 hour = _____ minutes
 How many minutes would there be in 2 hours?
- Match the bars to the times.

60 minutes

60 minutes 60 minutes

	(((
3	(()	(()	
3			((

Hours and Days

Reasoning and Problem Solving

Tommy Tommy Do you agree with Tommy? Explain why.	I disagree because there are 12 hours am and 12 hours pm therefore equaling 24 hours in a day.	The day starts at 12 o'clock and ends at 12 o'clock. Eva Here are Eva's calculations for working out how many hours there are in a day.	Eva has counted 12 o'clock three times. The final twelve on her list is the start of the next day.
If you add three hours onto the current time, the amount of minutes to/past the hour do not change. Do you agree with Rosie? Prove it.	I agree. The hour hand will change but the minutes will stay the same.	12 6 12 6 12 1 7 1 7 2 8 2 8 3 9 3 9 4 10 4 10 5 11 5 11 I counted them up, and there are 25 hours in a day. What mistake has Eva made?	

Find Durations of Time

Notes and Guidance

Children identify the start and end time of an event. They use these times to work out how long an event lasted. Children should understand this is the duration of an event. Children use individual clocks and number lines to help them work out the duration of an event. They can count in steps of 5 minutes to help them.

Mathematical Talk

What is the start time? What is the end time? How can we show this on the clock? How long did the event last?

How did you work out the duration? Are there any other methods for working out duration?

Varied Fluency

How much time has passed from the start to end time?

Complete the table.

Jack leaves school at quarter past 3 He arrives home at five to 4 How long was Iqbal's journey?

Find Durations of Time

Reasoning and Problem Solving

Oh no! The hour hand has fallen off the class clock!

The clock shows the start and end time of a film.

How long do you think the film lasted?

The film could have lasted 40 minutes, but children may reason that most films last more than an hour, so it is more likely to be an hour and 40 minutes or two hours and 40 minutes.

Aimee is planning her birthday. She wants to plan something to do from 9am to 5pm.

Here are the things she wants to do:

- Visit the zoo (3 hours)
- Go to Pizza Palace (1 hour and a half)
- Have breakfast (half an hour)
- Play party games (1 hour)
- Watch a film (2 hours)

Create a timetable for Aimee's day. Compare it to your friends – is it the same? There are 8 hours in Aimee's day so children could create different combinations for Aimee's day.

Compare Durations of Time

Notes and Guidance

Children compare times using 'longer' and 'shorter'. They order times from longest to shortest and vice versa.

Children then compare durations of time taken by particular events.

They could explore ways to work out durations of time most efficiently, including using empty number lines and using their knowledge that there are 60 minutes in an hour.

Mathematical Talk

Which is longer 2 minutes or 1 hour? How can you order the times? How many minutes does each TV show last? How can we count the minutes efficiently? How much longer is than? How can we efficiently work out the length of time each person works?

Varied Fluency

Can you order the times from longest to shortest?

Use the table to complete the sentences.

TV Show	Starts	Ends
Pop World	3 o' clock	Twenty to 4
Animal Patrol	Half past 6	Five to 7
Super Cars	Quarter past 8	Five past 9

is the shortest TV show.

____ is longer than ______ and _____

['] Joe works from half past 10 until 3 o' clock. Emma works from 9 o' clock until half past 12 Who works the longest amount of time?

Compare Durations of Time

Reasoning and Problem Solving

The clocks show the start and end time of the film Super Dog.

The film Crazy Cat starts at quarter past 1 and ends at quarter to 3

Teddy says,

Super Dog must be the longest film, because it ends the latest.

Do you agree with Teddy? Explain why. I do not agree with Teddy, because both films last exactly the same length of time – 1 hour and 30 minutes. Rosie has an hour for her lunch break. If she takes 10 minutes to eat her lunch, does she have enough time to complete all of the playground activities?

Activity	Duration
Skipping	7 minutes
Ball skills	10 minutes
Treasure hunt	21 minutes
Trim trail	19 minutes

How do you know?

Rosie doesn't have time to complete all of the activities. Completing all of the activities would take 57 minutes. If she spends 10 minutes eating her lunch, she would only have 50 minutes left.

Overview Small Steps

Introduce weight and mass	R	
Measure mass	R	
Compare mass		
Measure mass in grams		
Measure mass in kilograms		
Introduce capacity and volume	R	
Measure capacity	R	
Compare volume		
Millilitres		
Litres		
Temperature		

Notes for 2020/21

Children should revisit the idea of mass and capacity initially focusing on non-standard units such as cubes and jugs respectively. They will then look more formally at measuring using standard units.

Practical activities are encouraged to support understanding.

Introduce Weight & Mass

Notes and Guidance

Children are introduced to weight and mass for the first time. They may already have some understanding of heavy and light from their own experience of carrying objects.

Children should begin by holding objects and describing them using vocabulary such as heavy, light, heavier than, lighter than before using the scales to check.

The children may believe that larger objects are always heavier and this misconception should be explored.

Mathematical Talk

Hold two objects, which is heavier/lighter? How do you know? How can we prove this?

Are larger objects always heavier than smaller objects?

If the balance scale is down, what does that tell us?

- If the balance scale is up, what does that tell us?
- If the balance is level, what does that tell us?

Which of these objects is heavier? How do you know? How will this be shown on the weighing scale?

Varied Fluency

Which object is heavier? Which object is lighter? The _____ is heavier/lighter than the ______ .

Collect different objects from around your classroom. Use a balance scale to find the heaviest object. Can you find 2 objects that are equal in mass?

Introduce Weight & Mass

Reasoning and Problem Solving

The class are seeing whether the balloon or apple will weigh more. The balloon will be heavier because it is bigger than the apple. Eva The balance will be 9(0) level because they are Whitney both red. The apple will go down because it is lighter. Mo The balloon will go up 00 because it is lighter. Teddy

Teddy is correct. However his explanation needs to be clearer. Children should practice using vocabulary such as heavier than and lighter than when comparing objects alongside talking about the movement of the scale.

Children should be encouraged to explain why the others are incorrect.

62

I'm thinking of an object. It is heavier than a pencil, but lighter than a dictionary.

What object could Jack be thinking of? Prove it. How many objects can you think of? Children will use a balance scale to find objects that are heavier than a pencil, then check that their chosen objects are lighter than the dictionary.

Measure Mass

Notes and Guidance

- Children begin by using a variety of non-standard units (e.g. cubes, bricks) to measure the mass of an object. They see that when the scale is balanced, the number of nonstandard units can be used to determine the mass. E.g. One apple weighs ____ bricks.
- Children may find that it is difficult to balance objects exactly using non-standard units. For example an object may be heavier than 3 bricks, but lighter than 4 bricks.

Mathematical Talk

When the scales are balanced, what does this mean? How many _____ weigh the same as one _____?

If I add one more cube to this side, what will happen? How do you know? What if I take a cube away?

Which classroom objects are the best units to measure with? Why?

Varied Fluency

Use the non-standard units to measure each item on your table.

- Weigh an object using cubes and then weigh the same object
- using different non-standard units.
- Record your findings.
- What do you notice?
- Which non-standard unit was the best to use? Why
- Which non-standard unit was not good to use? Why?
- Which non-standard units would be the best to measure the mass of a heavy book?

Counters Wooden blocks Pencils

Why?

Year 1 | Spring Term | Week 10 to 11 - Measurement: Weight & Volume

Measure Mass

Reasoning and Problem Solving

The teddy bear weighs 5 cubes. I can take 1 cube off of each side of the scale and it will still balance.

R

Compare Mass

Notes and Guidance

Children recap on Year 1 learning by comparing the mass of different objects. They will initially use balance scales to compare the mass of two or more objects.

Children compare mass using < and > and order objects based on their masses.

Mathematical Talk

Look at the scale, which side is lower? What does this tell us about the objects?

Which object is heavier? Which object is lighter?

Can you hold the objects and predict which is heavier? Is a largest object always the heaviest?

Varied Fluency

Using the words 'more' and 'less' and the > or < symbols, describe the mass.

The lettuce weighs _____ than the pineapple.

Choose three objects. Use the balance scales to order them from heaviest to lightest?

The _____ is heavier than the _____ but lighter than the _____. The _____ is lighter than the _____ but heavier than the _____.

Complete the sentences:

Compare Mass

Reasoning and Problem Solving

Measure Mass (g)

Notes and Guidance

In Year 2, the children use standard units of mass (grams) for the first time. They continue to use balance scales before moving on to use standard weighing scales. Children apply their counting in 2s, 5s and 10s skills to reading

scales accurately. They should see a variety of scales with different intervals. Give children the opportunity to feel the mass of gram weights so they can use this for estimation.

Mathematical Talk

- When the balance scales are level, what does this tell us?
- What symbol could we use? (=)
- What is the mass of the _____?
- What would two _____weigh?
- How could you tell is something was lighter or heavier than 10g?
- How much heavier is the _____ than the _____? How could you work it out?

Varied Fluency

- Use gram weights to measure the mass of objects using a balance scale.
 - The _____ weighs _____ grams.

Use scales to record the mass of objects in grams.

Measure Mass (g)

Reasoning and Problem Solving

Which is heavier, the red or the green beanbag? Explain why. The red beanbag weighs more because it weighs the same as **two** green beanbags.

The tin of beans weighs 25 g and the pineapple weighs 30 g

Measure Mass (kg)

Notes and Guidance

- Children use their knowledge of measuring mass in grams to start to measure mass in kilograms.
- They apply counting in 2s, 5s and 10s to measure on different scales.
- Give children the opportunity to feel the mass of kilogram weights and real life objects that weigh 1 kg so they can use this to estimate.

Mathematical Talk

- Which is heavier, one gram or one kilogram? What else do you think we might measure in kilograms?
- How much do you think that you weigh? Would you measure this in grams or kilograms? Shall we estimate and then weigh ourselves?
- Can you make up some different questions about the suitcases? What words can you use to compare?

Varied Fluency

The person weighs ____ kg.

Sophie's family are going on holiday. Compare the mass of their

Sophie's suitcase is _____ than Dad's suitcase Mum's suitcase weighs ____ kg more than Dad's suitcase.

69

Measure Mass (kg)

Reasoning and Problem Solving

		-		
	Barrel A weighs 8 kg		The brown parcel weighs twice as much as the blue parcel.	The green parcel weighs 32 kg
	Barrel B weighs 16 kg		The green parcel weighs 2 kg more than 30 kg The blue parcel weighs 12 kg less than	The blue parcel weighs 20 kg
	Barrel C weighs 4 kg		the green parcel. Draw an arrow to show where each	The brown parcel weighs 40 kg
	B is 12 kg heavier than C		parcel would be on the scale.	
ıe		(0 10 20 30 40	

Introduce Capacity and Volume

Notes and Guidance

Children are introduced to volume and capacity for the first time.

They explore the concept in a practical way, using a variety of containers.

They compare the volume in a container by describing whether it is full, nearly full, empty or nearly empty.

Mathematical Talk

Look at my bottle, is it full? Is it empty?

Compare my two bottles, which has more liquid in? Which has less?

How can we show the container is nearly full or nearly empty?

How can we measure the capacity of this container?

Varied Fluency

Provide a range of different containers for children to explore practically using water or sand.

Show me full containers. Show me empty containers. Show me almost full. Show me almost empty.

Use the words 'more' or 'less' to compare the containers.

Introduce Capacity and Volume

Reasoning and Problem Solving

72

Measure Capacity

Notes and Guidance

Children measure the capacity of different containers using non-standard units of measure. They understand that the unit of measure must stay the same, for example the same cup, the same spoon etc.

They understand to measure accurately, they must make each container or non-standard measure full.

Mathematical Talk

How can we measure how much liquid will fill my container?

What could I use?

How many bowls of liquid fill the bottle?

How many cups of liquid fill the bottle?

How is this different? How is this the same?

Varied Fluency

Work practically using a variety of containers. Investigate how many small containers it takes to fill the larger containers.

The capacity of the _____ is _____ pots.

What about three buckets?

Four buckets?

What do you notice? Can you continue the pattern?

Measure Capacity

Reasoning and Problem Solving

Whitney pours her cups into the bottle and they fill it exactly.

She says the bottle has a capacity of four cups. Do you agree?

Whitney is wrong. She has not filled the cups to the top so her measuring is inaccurate.

It takes 5 づ to fill 1 🛜
It takes 2 🛜 to fill 1
How many 🍞 will fill one 7 ?
What else can you find out?

10 cups will fill one red bucket.

The children may also find that it will take 20 cups to fill 2 red buckets etc.

Compare Volume

Notes and Guidance

Children compare the volume of containers using < , > and = They build on their understanding of the difference between capacity and volume from Year 1. Capacity is the amount a container can hold. Volume is the amount it is actually holding.

Children use the language 'quarter', 'half' and 'three-quarters full' to describe and compare volume. Make sure children have the opportunity to practically investigate volume and capacity.

Mathematical Talk

Which container has the largest/smallest capacity? How do you know? Can we order them from largest to smallest?

Which container has the most or least liquid in?

How many <u>mugs</u> does it take to fill the <u>bottle?</u> Is this more or less than the <u>pot</u>? Can we find the difference? Does the tallest container always hold the most?

Varied Fluency

- Show three different containers. Which container has the largest capacity? Using water or rice, make each container: one quarter full, half full, three-quarters full.
- Complete the sentences using the words 'less', 'more' or equal'.

- Container A has _____ than container B.
- В
 - Container C has _____ than container B.
 - Container A has _____ than container C
- A B C but _____ than container B.
- Complete the sentences:

Use other containers to investigate how many mugs of rice they take to fill.

Compare Volume

Reasoning and Problem Solving

Whitney had two full bottles of juice. She poured some juice into two glasses.

Which glass has the most juice in? Which has the least juice in? Explain how you know. Glass A has the least juice in and Glass B has more juice in. Bottle A has more juice left over which means it has less juice poured out.

 $\begin{array}{c} \end{array} = \end{array} \\ How many \\ \end{array} does the$

The pot holds 40 cups of water.

Choose a selection of different sized containers.

Decide how you will measure how much liquid each container can hold. Order your containers from smallest to largest.

Compare the containers using <, > or =

Millilitres

Notes and Guidance

Children are introduced to standard units of millilitres (ml) for the first time.

They should be provided with a selection of different measuring cylinders and jugs in order to practice measuring in millilitres. They should be encouraged to estimate how many ml unlabeled containers will hold and then use measuring cylinders or jugs to check.

Mathematical Talk

Which container has the largest/smallest capacity? Can we order them from largest to smallest?

Look at the scale on my cylinder, what do you notice? Is this the same for this cylinder?

If we pour the liquid from this <u>jar/glass</u> into the cylinder, how much does each container hold?

Varied Fluency

- Use a variety of different containers with ml clearly labelled e.g. measuring spoon, water bottle, liquid soap, vinegar etc. Introduce that liquid can be measured in millilitres. Discuss whether 5 ml is a large or small amount. Show 5 ml using a medicine spoon. Look at the containers estimate then identify how many ml each container holds.
- Draw the level on the scale to show the capacity of each container.

Use different containers e.g. mug, bowl, pan, tea cup. Fill them with water or rice. Pour them into a measuring cylinder and measure the amount of liquid or rice in the measuring cylinder.

Millilitres

Reasoning and Problem Solving

The water is between 40 ml and 50 ml It is approximately 45 ml

Litres

Notes and Guidance

Children are introduced to litres (l) as a standard unit for the first time.

Children recognise the difference between measuring in millilitres and litres and when it is more efficient to use litres to measure liquid rather than millilitres. They should be encouraged to estimate volumes and then check by measuring.

Mathematical Talk

Which is larger, 1 mililitre or 1 litre? How do you know?

Would you measure _____ in litres or millilitres? Why?

How many litres of water do you drink a day?

Show the children a litre container. How many litres of water do you think it would take to fill _____?

Varied Fluency

Provide a variety of different containers with litres clearly labelled e.g. cola bottle, paint bottle, milk etc.

Introduce litres and discuss how these are the same but different to millilitres. Identify how many litres fill each container.

Show how much liquid is in each cylinder after you:

- Pour 3 litres of water into the cylinder.
- Leave 1 litre of cola in the bottle.
- Pour half of the juice into the cylinder.

Use different containers e.g. bucket, large pan etc. Estimate and then measure the capacity of each one.

79

There is less in

bucket A because

there will be 1 litre

Litres

bucket B.

Reasoning and Problem Solving

Which sentence is correct? A B
There is more in bucket A.
There is less in bucket A.
There are equal amounts in each bucket.
Explain why.

Eva wants to measure 2 litres of water into a tub. She only has a 5 litre and a 3 litre container.

Mo puts 4 litres of water in bucket A. He then pours 3 litres from bucket A into

How can she use both containers to measure 2 litres?

Eva could fill her 5 litre container and then empty 3 litres into the 3l container. She will be left with 2 litres.

5l - 3l = 2l

3 bowls each have more than 20 l of
water in but less than 50 l

The green bowl has 5 l more than the red bowl.

The blue bowl has 10 l more than the green bowl.

How much could each bowl have in?

The red bowl could have between 20 l and 35 l

The green bowl could have between 25 l and 40 l

The blue bowl could have between 35 l and 50 l

Temperature

Notes and Guidance

Children are introduced to temperature, thermometers and the units 'degrees Centigrade', written $^{\circ}C$ for the first time. They learn that the temperature is higher when it is warmer.

They apply their counting in 2s, 5s and 10s skills when reading different scales on thermometers.

Mathematical Talk

What unit can we use to measure temperature?

What is the scale going up in? How do you know?

If the temperature increases what happens to the number on the scale?

If the temperature decreases what happens to the number on the scale?

Can we compare temperatures using vocabulary such as increased, decreased, warmer, colder and difference?

Varied Fluency

Take temperatures around the school and complete the following stem sentences:
The temperature in the classroom is ______.
The classroom is ______ than the playground.
The difference in temperature between the ______ and the ______ is ___ degrees Celsius.

Complete the thermometers to show the temperatures.

Temperature

Reasoning and Problem Solving

Mollie took the temperature at 12 p.m. and again at 5 p.m.

There was a difference of 7°C

What could the temperatures be?

Children may give any temperatures that have a difference of 7

Some children may realise that it is usually cooler in the evening and therefore make sure there 12pm temperature is always warmer than the 5pm temperature. What is the same and what is different about the thermometers/temperatures?

Both thermometers are showing 30°C

The scale on the first thermometer counts up in 5°c. The scale on the second thermometer counts up in 10°C

The second thermometer will be able to record higher temperatures.